
10_pca

February 16, 2024

1 Principal Component Analysis
variationalform https://variationalform.github.io/

Just Enough: progress at pace https://variationalform.github.io/

https://github.com/variationalform

Simon Shaw https://www.brunel.ac.uk/people/simon-shaw.

This work is licensed under CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International)

Visit http://creativecommons.org/licenses/by-sa/4.0/ to see the terms.

This document uses python

and also makes use of LaTeX

in Markdown

1.1 What this is about:
• Principal Component Analysis, or PCA. What it is, mathematically and in code.
• How it works, with examples.
• The connection between PCA and eigenvalues, and the SVD (Singular Value Decompo-

sition).

As usual our emphasis will be on doing rather than proving: just enough: progress at pace

1.2 Assigned Reading
For this worksheet you are recommended Chapters 4 and 10 of [MML], Chapter 10 of [MLFCES],
Chapter 5.3 of [IPDS],

• MML: Mathematics for Machine Learning, by Marc Peter Deisenroth, A. Aldo Faisal, and
Cheng Soon Ong. Cambridge University Press. https://mml-book.github.io.

• MLFCES: Machine Learning: A First Course for Engineers and Scientists, by Andreas Lind-
holm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön. Cambridge University Press.
http://smlbook.org.

• IPDS: Introduction to Probability for Data Science, by Stanley H. Chan, https://
probability4datascience.com

1

https://variationalform.github.io/
https://variationalform.github.io/
https://github.com/variationalform
https://www.brunel.ac.uk/people/simon-shaw
https://mml-book.github.io
http://smlbook.org
https://probability4datascience.com
https://probability4datascience.com

These can be accessed legally and without cost.

There are also these useful references for coding:

• PT: python: https://docs.python.org/3/tutorial
• NP: numpy: https://numpy.org/doc/stable/user/quickstart.html
• MPL: matplotlib: https://matplotlib.org

1.3 Context
We have seen these

• Eigenvalue decomposition
• SVD, the Singular Value Decomposition

Let’s review them…

1.4 Eigen-systems of Symmetric Matrices
Given a real square symmetric n-row by n-column matrix, A ∈ Rn×n, the eigenvalue problem is
that of finding scalar eigenvalues λ and n-dimensional eigenvectors v such that

Av = λv =⇒ AV = V D =⇒ A =

n∑
k=1

λkvkv
T
k .

The eigensystem is real.

We have the Spectral Theorem - see [MML, Theorem 4.15]

Spectral Theorem (for matrices) If A is real and symmetric then its eigenvalues
are all real and its eigenvector matrix V can be taken as orthogonal so that V −1 = V T .
Hence…

A = V DV T

1.5 The SVD: Singular Value Decomposition
Given a real m-row by n-column matrix, B ∈ Rm×n

B = UΣV T =

p∑
j=1

σjujv
T
j

where: for the left singular vectors: U ∈ Rm×m; for the singular values: Σ ∈ Rm×n; and, for the
right singular vectors, V ∈ Rn×n. Here p = min{m,n}.

Note that Σ = diag(σ1, . . . , σp) + zeros, and we can always arrange that 0 ≤ σp ≤ · · · ≤ σ1.

As B is real, U and V are real and orthogonal.

If σr ̸= 0 and σp = 0 for all p > r then r is the rank of B.

2

https://docs.python.org/3/tutorial
https://numpy.org/doc/stable/user/quickstart.html
https://matplotlib.org

1.6 How are these factorizations connected?
On the face of it they are very different. the first applies only to square symmetric matrices, while
the second applies also to rectangular, and hence (why?) non-symmetric matrices.

But… Look at this… Given the SVD B = UΣV T we have,

BTB =
(
UΣV T

)T
UΣV T

and remembering that, in general, (KL)T = LTKT (this could be called taking the transpose
through), we can write,

BTB = V ΣTUTUΣV T = V ΣTΣV T

because UTU = I (orthogonal).

Similarly, because also V TV = I (orthogonal),

BBT = UΣV T
(
UΣV T

)T
= UΣV TV ΣTUT = UΣΣTUT .

Do you recognise these?

We have just shown that,

BTB = V ΣTΣV T and BBT = UΣΣTUT .

Familiar? Think about A = V DV T .

• Put A = BTB (symmetric) and D = ΣTΣ. Then,

BTB = V ΣTΣV T becomes A = V DV T .

• Put A = BBT (symmetric) and D = ΣΣT . Then,

BBT = UΣΣTUT becomes A = UDUT .

• V , the right singular vectors in the SVD are the eigenvectors of BTB.

• U , the left singular vectors in the SVD are the eigenvectors of BBT .

• In both cases Σ contains the positive square roots of the eigenvalues of BTB and BBT .

• NOTE: BTB and BBT have the same non-zero eigenvalues (same rank).

3

1.7 Why does this matter?
Our data, X, is organized into rows of feature values with one observation per row and one feature
per column. We write this as

X =
(
X0,X1, · · · ,XD

)
If D = 3 (four features)…

… we recall that the covariance matrix takes this form:

S =


Var(X0) Cov(X0, X1) Cov(X0, X2) Cov(X0, X3)
Cov(X1, X0) Var(X1) Cov(X1, X2) Cov(X1, X3)
Cov(X2, X0) Cov(X2, X1) Var(X2) Cov(X2, X3)
Cov(X3, X0) Cov(X3, X1) Cov(X3, X2) Var(X3)


because Cov(X,X) = Var(X). Since Cov(X,Y) = Cov(Y,X), this matrix is symmetric and so
has real eigenvalues.

We have seen that if the data are already centred then,

(N − 1)S =


X0 ·X0 X0 ·X1 X0 ·X2 X0 ·X3

X1 ·X0 X1 ·X1 X1 ·X2 X1 ·X3

X2 ·X0 X2 ·X1 X2 ·X2 X2 ·X3

X3 ·X0 X3 ·X1 X3 ·X2 X3 ·X3

 =


XT

0

XT
1

XT
2

XT
3

(
X0 X1 X2 X3

)

and, hence (in general), the (sample) covariance matrix for N observations is

S =
1

(N − 1)
XTX.

1.8 Terminology
We just introduced the sample covariance matrix:

S =
1

(N − 1)
XTX.

The N−1 in the denominator makes this an unbiased estimate of the population statistics. When
N is large we can just work with

S =
1

N
XTX

and call it the empirical covariance matrix.

This terminology is discussed in [MML, Section 6.4.2].

4

1.9 Conventions
We have now adopted a convention that our data matrix X has features varying along the rows,
and observations varying down the columns so that:

X =
(
X0,X1, · · · ,XD

)
gives a data set with D+1 features. The length (they must all be the same) of the column vectors
X1, X2, . . . , XD tell us how many observations there are. We’ve been denoting this by N .

HOWEVER: in some sources this convention is transposed. The different features
occupy their own rows of the matrix, with the observations recorded along the rows.

This is the case in [MML]. It means that

S =
1

N
XTX for us, becomes S =

1

N
XXT for them

because our X is their XT .

BE CAREFUL: this is not uncommon

1.10 Features and Observations
Let’s say there are D + 1 features (columns) in our data set X and N observations (rows).

An observation takes the form xj = (x1, x2, . . . , xd)
T , a column vector, for j = 1, 2, . . . , N .

Hence,

X =
(
X0,X1, · · · ,XD

)
=

(
x0,x1, · · · ,xN

)T

Note: we are using upper case Xk for a column vector of observations of a feature (in the column
indexed by k), and lower case, xj , for a feature vector arising from a single observation (in the
row indexed by j).

We only use column vectors in these notes.

1.11 PCA - Principal Component Analysis
The main idea and motivation behind this is that high dimensional data often lives very close to a
lower dimensional subspace.

A typical and often used example of this is that in Figure 10.1 of [MML, Chap. 10].

We can see that here: https://mml-book.github.io.

PCA will analyze a data set and determine the direction in which most variation occurs. If we are
to approximate using a lower dimesional space then this is a good direction (subspace component)
to start with.

Technically, PCA determines directions which maximize variance.

5

https://mml-book.github.io

Let’s go through this slowly - it can be quite confusing.

1.12 PCA - outline algorithm.
• Take our D-column by N -row data set X and ensure that the column means are zero.

• This is referred to as centering the data.

• It means that E(Xd) = 0 for columns d = 0, 1, 2, . . . , D − 1.

• We want a D-row by M -column matrix B ∈ RD,M , called the code in [MML], such that we
can define Z as follows:

Z = XBBT

• If M = D we insist that Z = X. Otherwise we have M < D and Z is an approximation (a
projection) of X in a lower dimensional subspace.

• We determine B by minimizing the reconstruction error:

J =
1

N

N∑
n=1

∥xn − zn∥22

where zn is the n-th row of Z.

2 Some Technicalities
THINK ABOUT: If X = XBBT when M = D then BBT = ID. Is B square?

THINK ABOUT: If Z = XBBT when M < D then what shape is Z? Is it the
same shape as X?

THINK ABOUT: If we set Y = XB then Z = Y BT . What shape is Y ?

THINK ABOUT: Y will be N -rows by M -columns. Y is smaller than X if M < D
and represents dimensionality reduction.

THINK ABOUT: the reduction Y = XB, and the subsequent enlargement Z =
Y BT is the basis of an autoencoder. Z is a reconstruction of X resulting from a data
compression step.

This minimization referred to above is a long technical excursion in multivariable calculus. The
important result of it is that we need to find the eigensystem of the empirical data covariance
matrix,

S =
1

N
XTX.

This means we want to solve

Sv = λv

6

for the eigenpairs (λ1,v1), (λ2,v2), . . .

Then B = (v1,v2, . . . ,vM) and the eigenvalues tell us how much variance of the original data set
is captured by the M -dimensional projection.

Let’s see this in action…

2.1 Worked example
Consider this set of data (already centered),

X =


1 2
2 1

−2 −1
−1 −2

 =⇒ S =
1

N
XTX =

1

4

(
10 8
8 10

)

The eigensystem, with SV = V D, is

V =
1√
2

(
1 −1
1 1

)
=

(
v0 v1

)
and D =

1

2

(
9 0
0 1

)
=

(
λ0 0
0 λ1

)
.

Let’s see this in python…

[1]: import numpy as np
import matplotlib.pyplot as plt
set up the feature matrix and check the column means are zero
D=2; N=4
X = np.array([[1, 2], [2, 1], [-2, -1], [-1, -2]])
print(f'Column means: col 1, {X[:,0].mean()} and col 2, {X[:,1].mean()}')
and the empirical covariance matrix
S = 1/N*X.T @ X
print('S = \n',S)
solve the eigenvalue problem
lmda, V = np.linalg.eig(S)
print('evals = ', lmda)
print('evecs = \n', V)

Column means: col 1, 0.0 and col 2, 0.0
S =
[[2.5 2.]
[2. 2.5]]
evals = [4.5 0.5]
evecs =
[[0.70710678 -0.70710678]
[0.70710678 0.70710678]]

[2]: # a picture will tell us much more...
plt.figure(figsize=(4,4)); plt.gca().set_aspect('equal')
plot the data in blue

7

plt.plot(X[:,0], X[:,1], '.', color='b')
plot the eigenvectors...
the first in red from -v0 to +v0 with length 2*lambda_0
x0 = lmda[0]*V[0,[0]]; y0 = lmda[0]*V[1,[0]]
plt.plot([-x0,x0],[-y0,y0],'-', color='r')
the second in green from -v1 to +v1 with length 2*lambda_1
x1 = lmda[1]*V[0,[1]]; y1 = lmda[1]*V[1,[1]]
plt.plot([-x1,x1],[-y1,y1],'-', color='g')

[2]: [<matplotlib.lines.Line2D at 0x7f9fd80ce588>]

We see that the direction of maximum variance is given by the dominant eigenpair. The next
eigenpair is orthogonal.

Now, we know that V is an orthogonal matrix, so that V V T = I.

It is therefore clear that X = XV V T . Now, with V = (v0,v1), we observe that

Z0 = Xv0v
T
0 =

3

2


1 1
1 1

−1 −1
−1 −1

 and Z1 = Xv1v
T
1 =

1

2


−1 1
1 −1

−1 1
1 −1


The rows give us the projections of the original rows (features) onto the lower dimensional subspaces.

Let’s see it in code, and then in pictures (building on the picture above)…

8

[3]: print('X - X V V.T = \n', X - X @ V @ V.T)

v0 = V[:,[0]]; Z0 = X @ v0 @ v0.T
print('X @ v0 @ v0.T = \n', Z0)

v1 = V[:,[1]]; Z1 = X @ v1 @ v1.T
print('X @ v1 @ v1.T = \n', Z1)

X - X V V.T =
[[1.11022302e-16 2.22044605e-16]
[4.44089210e-16 2.22044605e-16]
[-4.44089210e-16 -2.22044605e-16]
[-1.11022302e-16 -2.22044605e-16]]
X @ v0 @ v0.T =
[[1.5 1.5]
[1.5 1.5]
[-1.5 -1.5]
[-1.5 -1.5]]
X @ v1 @ v1.T =
[[-0.5 0.5]
[0.5 -0.5]
[-0.5 0.5]
[0.5 -0.5]]

[4]: plt.figure(figsize=(3,3)); plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')
plt.plot([-x0,x0],[-y0,y0],'-', color='r')
plt.plot([-x1,x1],[-y1,y1],'-', color='g')
just the first row of Z0 for the moment
plt.plot([X[0,0], Z0[0,0]], [X[0,1], Z0[0,1]], ':', marker='o', color='r',␣
↪→markevery=[1])

[4]: [<matplotlib.lines.Line2D at 0x7f9fc008e3c8>]

9

In the first row of Z0 = Xv0v
T
0 , the original point at (1, 2) is projected to the new point (1.5, 1.5)

on the dominant lower dimensional subspace. What about Z1 = Xv1v
T
1 ?

[5]: plt.figure(figsize=(3,3)); plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')
plt.plot([-x0,x0],[-y0,y0],'-', color='r')
plt.plot([-x1,x1],[-y1,y1],'-', color='g')
just the last row of Z1 for the moment
plt.plot([X[3,0], Z1[3,0]], [X[3,1], Z1[3,1]], ':', marker='o', color='g',␣
↪→markevery=[1])

[5]: [<matplotlib.lines.Line2D at 0x7fa0002e5240>]

10

Now in the last row of Z1 = Xv1v
T
1 , the original point at (−1,−2) is projected to the new point

(0.5,−0.5) on the next-dominant lower dimensional subspace.

Let’s see all the projections in one picture.

[6]: plt.figure(figsize=(3,3)); plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')
plt.plot([-x0,x0],[-y0,y0],'-', color='r')
plt.plot([-x1,x1],[-y1,y1],'-', color='g')
for k in range(4):

plt.plot([X[k,0], Z0[k,0]], [X[k,1], Z0[k,1]], ':', marker='o', color='r',␣
↪→markevery=[1])
plt.plot([X[k,0], Z1[k,0]], [X[k,1], Z1[k,1]], ':', marker='o', color='g',␣

↪→markevery=[1])

2.2 The Local Coordinate System
If we treat the eigenvectors as subspaces then the length along each eigenvector is the local coor-
dinate in that subspace. How can we get these coordinates? Well, look at this:

X =


1 2
2 1

−2 −1
−1 −2

 =⇒ Xv0 =
1√
2


3
3

−3
−3

 and Xv1 =
1√
2


1

−1
1

−1

 .

These tell us that the first two points (rows) in X project to coincident points a distance 3√
2

along
the dominant eigenvector, and that the second two points project to coincident points a distance
−3√
2

along the dominant eigenvector.

On the other hand, the first and third points project to distances 1√
2

along the second eigenvector,
while the second and fourth project to distances −1√

2
.

11

Here is some code to illustrate this…

[7]: Xv0 = X @ v0
Xv1 = X @ v1
multiply by root 2 to tidy up the output
print('sqrt(2) X v0 = \n', np.sqrt(2) * Xv0)
print('sqrt(2) X v1 = \n', np.sqrt(2) * Xv1)

sqrt(2) X v0 =
[[3.]
[3.]
[-3.]
[-3.]]
sqrt(2) X v1 =
[[1.]
[-1.]
[1.]
[-1.]]

[8]: plt.figure(figsize=(4,4)); plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')
plt.plot([-x0,x0],[-y0,y0],'-', color='r')
plt.plot([-x1,x1],[-y1,y1],'-', color='g')
cos45 = sin45 = 1/np.sqrt(2)
for data point 0 along v0
plt.plot([0, Xv0[0,0]*cos45], [0, Xv0[0,0]*sin45], ':', marker='o', color='k',␣
↪→markevery=[1])

for data point 3 along v1
plt.plot([0, -Xv1[3,0]*cos45], [0, Xv1[3,0]*sin45], ':', marker='o', color='k',␣
↪→markevery=[1])

[8]: [<matplotlib.lines.Line2D at 0x7fa00030ee10>]

12

2.3 Explained Variance
There is yet more to see… The column-wise variances in the orignal data set,

X =


1 2
2 1

−2 −1
−1 −2


are


Var(X0) = E(X0 ·X0) = 1

4

(
1 + 22 + (−2)2 + 1

)
= 5

2 ,

Var(X1) = E(X1 ·X1) = 1
4

(
22 + 1 + 1 + (−2)2

)
= 5

2

and the total variance in the data set is 5
2 + 5

2 = 5 (Note - this isn’t what you get by stacking the
data and taking a single variance because the mean(s) may get altered).

The sum of the individual feature variances is 5
2 + 5

2 = 5.

In PCA, each eigenvalue gives the variance in the direction of its eigenvector.

Our eigenvalues were λ0 =
9
2 and λ1 =

1
2 . The total variance is therefore 9

2 + 1
2 = 5.

THINK ABOUT: the trace of a matrix is the sum of its eigenvalues. Relevance?

We talk about each eigenvalue explaining variance in the original data set.

13

Here the first eigenvalue explains 9
2 ÷ 5 = 90% of the original variance. The remaining 5% is in the

orthogonal direction of the second eigenvector.

2.4 The connection to SVD
We just performed PCA using an eigenvalue analysis of the empirical covariance matrix

S =
1

N
XTX leading to 1

N
XTXv = λv.

Earlier, given the SVD B = UΣV T , we saw that putting A = BTB (symmetric) and D = ΣTΣ
led to

BTB = V ΣTΣV T becoming A = V DV T .

Therefore, for PCA we could also obtain the SVD of X and use the right singular vectors. The
eigenvalues will be the squares of the singular values divided by N .

Let’s check this:

[9]: # re-solve the eigenvalue problem
lmda, V = np.linalg.eig(S)
print(f'evals = {lmda} and V = ')
print(V)
take the SVD of X
U, Sig, VT = np.linalg.svd(X)
print(f'singular values Sigma = {Sig}')
print(f'Sigma^2/N = {Sig*Sig/N} and V = ')
print(VT.T)

evals = [4.5 0.5] and V =
[[0.70710678 -0.70710678]
[0.70710678 0.70710678]]
singular values Sigma = [4.24264069 1.41421356]
Sigma^2/N = [4.5 0.5] and V =
[[-0.70710678 -0.70710678]
[-0.70710678 0.70710678]]

Let’s see how to do PCA with sklearn…

[10]: from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
print('Here is the explained variance as ratios...')
print(f'XV ratio = {pca.explained_variance_ratio_}')
print(f'Here are the singular values = {pca.singular_values_}')
print('the eigenvalues are squares of the singular values divided by N')
print(f'eigenvalues = {pca.singular_values_**2/N}')

14

Here is the explained variance as ratios…
XV ratio = [0.9 0.1]
Here are the singular values = [4.24264069 1.41421356]
the eigenvalues are squares of the singular values divided by N
eigenvalues = [4.5 0.5]

The principal components can be compared with the eigenvectors from above.

Beware: they are given to us in rows.

[11]: # the principal components are stored as row vectors, so transpose
B = pca.components_.T
print('Principal Components (transposed) B = \n', B)
print('Compare with our earlier V = \n', V)

Principal Components (transposed) B =
[[0.70710678 0.70710678]
[0.70710678 -0.70710678]]
Compare with our earlier V =
[[0.70710678 -0.70710678]
[0.70710678 0.70710678]]

Do you remember that above we used Xv0 and Xv1 to get the positions (lengths) along the
principal axes of the projected data points?

sklearn can do this for us:

[12]: # multiply by sqrt(2) to tidy the output.
Xf = pca.fit_transform(X)
print('np.sqrt(2)*Xf = \n', np.sqrt(2)*Xf)

np.sqrt(2)*Xf =
[[3. -1.]
[3. 1.]
[-3. -1.]
[-3. 1.]]

Technically, the principal components give us a new basis for the data space. These transformed
coordinates gives us the coordinates of the data in the new basis. Let’s see this in pictures…

Here are the original data points in the original feature basis. This is where each axis is labelled
with the feature name.

[13]: plt.figure(figsize=(4,4)); plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')

[13]: [<matplotlib.lines.Line2D at 0x7f9ff07e8eb8>]

15

Here are the data points in the PCA basis.

[14]: plt.figure(figsize=(4,4)); plt.gca().set_aspect('equal')
plt.plot(Xf[:,0], Xf[:,1], '.', color='b')

[14]: [<matplotlib.lines.Line2D at 0x7f9fd9716e48>]

• It is immediately apparent that the data has become more one dimensional.

• An issue though is that the axes are no longer easily interpreted.

• This is relevant to the explainability agenda in AI and Data Science.

2.5 Reflection
That was a long journey - and we didn’t even derive the results, we just quoted and illustrated
them. This, again, is because we are doing just enough to make progress at pace.

16

We’re now going to embark on a much more realistic (well, in 2D at least) example of how this
works. We’ll go faster because all the work has been done.

2.6 Standard Example
The following example is used a lot in account of PCA.

The idea is to generate and plot a lozenge of Gaussian distributed data. It will have unequal
variances (otherwise it would be a circle).

[15]: # generate this number of sample points
Ns=50
The Gaussian lozenge will be centered with non-unit covariance
mean = [0, 0]
cov = [[30, 15], [15, 15]]
generate Ns random points (x,y)
x, y = np.random.multivariate_normal(mean, cov, Ns).T
reshape them to columns and stack them next to each other
X = np.hstack((x.reshape(-1,1),y.reshape(-1,1)))
We can see it if the data matrix is small - otherwise little point
if Ns < 8: print(X)

[16]: # let's look at the empirical column means - they wont be exactly zero
print(f'Column means 1, {X[:,0].mean()} and 2, {X[:,1].mean()}')
so let's center this sample data
X[:,0] -= X[:,0].mean()
X[:,1] -= X[:,1].mean()
print(f'Centered column means 1, {X[:,0].mean()} and 2, {X[:,1].mean()}')

Column means 1, -1.128231495797423 and 2, -0.9316252071162511
Centered column means 1, -1.5987211554602254e-16 and 2, 1.509903313490213e-16

[17]: # let's plot our data set
plt.figure(figsize=(4,4))
plt.xlim(-20,20)
plt.ylim(-20,20)
plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')

[17]: [<matplotlib.lines.Line2D at 0x7f9fe08ee4a8>]

17

[18]: # perform the PCA
pca = PCA(n_components=2)
pca.fit(X)
print(f'XV ratio = {pca.explained_variance_ratio_}')
print(f'sing vals = {pca.singular_values_}')
the component are stored as row vectors, so transpose
V = pca.components_.T
print('V = \n', V)

XV ratio = [0.81242882 0.18757118]
sing vals = [36.93179951 17.74560735]
V =
[[-0.84152666 -0.54021558]
[-0.54021558 0.84152666]]

[19]: # project X to the singular components
Z1 = X @ V[:,[0]] @ V[:,[0]].T
Z2 = X @ V[:,[1]] @ V[:,[1]].T

[20]: # re-plot, and include all the projected data
plt.figure(figsize=(4,4))
plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')
plot the projections - these illustrate the directions
plt.plot(Z1[:,0], Z1[:,1], '.', color='r')

18

plt.plot(Z2[:,0], Z2[:,1], '.', color='g')
Now loop over each point and dot-line the projection onto v0 and v1
for k in range(Ns):

plt.plot([X[k,0], Z1[k,0]], [X[k,1],Z1[k,1]], ':', color='r')
plt.plot([X[k,0], Z2[k,0]], [X[k,1],Z2[k,1]], ':', color='g')

zoom in or out with this...
window=10; plt.xlim(-window,window); plt.ylim(-window,window); plt.show()

[21]: # Let's see what the data looks like in the new coordinate system
Xf = pca.fit_transform(X)

[22]: # here is the original...
plt.figure(figsize=(4,4))
plt.xlim(-20,20)
plt.ylim(-20,20)
plt.gca().set_aspect('equal')
plt.plot(X[:,0], X[:,1], '.', color='b')

[22]: [<matplotlib.lines.Line2D at 0x7f9ff0856080>]

19

[23]: # here is the transformed data
plt.figure(figsize=(4,4))
plt.xlim(-20,20)
plt.ylim(-20,20)
plt.gca().set_aspect('equal')
plt.plot(Xf[:,0], Xf[:,1], '.', color='b')

[23]: [<matplotlib.lines.Line2D at 0x7f9fd133ee10>]

20

2.6.1 Review

We covered just enough, to make progress at pace. We looked at

• How the SVD and eigenvalue decomposition are related.
• How this becomes relevant to the data covariance matrix.
• PCA and its use in variance maximization.

Now we can start putting all of this material to work.

2.7 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides 10_pca.ipynb
• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save

21

• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[24]: %%bash
NBROOTNAME=10_pca
OUTPUTTING=1

if [$OUTPUTTING -eq 1]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

[NbConvertApp] Converting notebook 10_pca.ipynb to html
[NbConvertApp] Writing 691045 bytes to 10_pca.html
[NbConvertApp] Converting notebook 10_pca.ipynb to pdf
[NbConvertApp] Support files will be in 10_pca_files/
[NbConvertApp] Making directory ./10_pca_files
[NbConvertApp] Making directory ./10_pca_files
[NbConvertApp] Making directory ./10_pca_files
[NbConvertApp] Making directory ./10_pca_files
[NbConvertApp] Writing 86353 bytes to notebook.tex
[NbConvertApp] Building PDF
[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.tex', '-quiet']
[NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
[NbConvertApp] WARNING | bibtex had problems, most likely because there were no
citations
[NbConvertApp] PDF successfully created
[NbConvertApp] Writing 140519 bytes to 10_pca.pdf
[NbConvertApp] Converting notebook 10_pca.ipynb to script

22

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

[NbConvertApp] Writing 32259 bytes to 10_pca.py

23

	Principal Component Analysis
	What this is about:
	Assigned Reading
	Context
	Eigen-systems of Symmetric Matrices
	The SVD: Singular Value Decomposition
	How are these factorizations connected?
	Why does this matter?
	Terminology
	Conventions
	Features and Observations
	PCA - Principal Component Analysis
	PCA - outline algorithm.

	Some Technicalities
	Worked example
	The Local Coordinate System
	Explained Variance
	The connection to SVD
	Reflection
	Standard Example
	Review

	Technical Notes, Production and Archiving

