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1.1 What this is about:
The perceptron

• weighted inputs
• activation thresholds and outputs
• decision boundaries
• multi-layer perceptrons
• feed-forward artificial neural network

As usual our emphasis will be on doing rather than proving: just enough: progress at pace

1.1.1 Assigned Reading

For this material you are recommended Chapter 3 of [UDL], then Chapter 3 of [NND], and Chapter
6 of [MLFCES],

• UDL: Understanding Deep Learning, by Simon J.D. Prince. PDF draft available here: https:
//udlbook.github.io/udlbook/

• NND: Neural Network Design by Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale,
Orlando De Jesús. https://hagan.okstate.edu/nnd.html and https://hagan.okstate.
edu/NNDesign.pdf

1

https://variationalform.github.io/
https://variationalform.github.io/
https://github.com/variationalform
https://www.brunel.ac.uk/people/simon-shaw
https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://hagan.okstate.edu/nnd.html
https://hagan.okstate.edu/NNDesign.pdf
https://hagan.okstate.edu/NNDesign.pdf


• MLFCES: Machine Learning: A First Course for Engineers and Scientists, by Andreas Lind-
holm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön. Cambridge University Press.
http://smlbook.org.

These can be accessed legally and without cost.

There are also these useful references for coding:

• PT: python: https://docs.python.org/3/tutorial
• NP: numpy: https://numpy.org/doc/stable/user/quickstart.html
• MPL: matplotlib: https://matplotlib.org

1.2 Context
In the last two sessions we moved from classification to regression and then we moved back to
classification again.

We have focussed on cases where the data is linearly separable. This important property allowed
us to use logistic regression and support vector machines to construct linear decision
boundaries.

In this session we will continue to work with linear decision boundaries and investigate the per-
ceptron and feed forward neural networks.

The main purpose of this session is to get insight into how perceptrons can carve up high di-
mensional space with hyperplanes, thus creating many compartments within which data classes
can be isolated. This will set us up nicely for our study of deep neural networks.

1.2.1 The Percepton - and a Shallow Neural Network

A perceptron is a computing unit that accepts a vector of numerical inputs, x, and forms a linear
combination of them using a vector of weights, W . A numerical bias, b, may then be added to
form a real number.

This real number is then thresholded with an activation function. This activation function seeks
to determine how significant its input signal is and either kills it or passes it some form of it through.

The whole system is an attempt to (very crudely) mimic the neuronal connections in the brain.

Chapters 2 and 3 of [UDL, Chapter 3] https://udlbook.github.io/udlbook/ are useful back-
ground reading, but what we do here is self-contained.

Here it is - schematically. The input vector x = (x1, x2, x3)
T , and weights, W = (w1, w2, w3)

T ,
are linearly combined. An optional bias, b, is added and the result, n is fed into an activation
function, σ : R → R to produce the output y.

n = w1x1 + w2x2 + w3x3 + b,

= W Tx+ b,
y = σ(n).

x1 w
↘ σ(n)

x2 → n⃝ −→ y
↗ ↑

x3 b
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Compactly: y = σ(W Tx + b). Let’s see why this is so useful - it really comes down the the
activation function. Without that this isn’t such a big deal.

1.2.2 The Heaviside Unit Step function

This is defined as follows:

H(x) =


1 if x > 0;
x2 if x = 0;
0 if x < 0.

It represents a switch being thrown as the input increases through zero, with the output signal
moving from zero to one. The value x2 at the discontinuity is usually arbitrary. We have included
it because numpy allows it with this syntax:

np.heaviside(x,x2)

We will usually take x2 = 0. For details see here: https://numpy.org/doc/stable/reference/
generated/numpy.heaviside.html

The Heaviside function can be used as an activation function - let’s see it.

[1]: import matplotlib.pyplot as plt
import numpy as np
import numpy.matlib # a new one, needed below for repmat

[2]: x_vals = np.arange(-20, 20.1, 0.1)
y_vals_1 = np.heaviside(x_vals, 0)
y_vals_2 = np.heaviside(x_vals - 5, 0)
y_vals_3 = 2*np.heaviside(x_vals + 8, 0)

[3]: plt.figure(figsize=(10,4)); plt.gca().set_aspect(10)
plt.plot(x_vals, y_vals_1, color='blue', label='H(x)')
plt.plot(x_vals, y_vals_2, color='red', label='H(x-5)')
plt.plot(x_vals, y_vals_3, color='green', label='2H(x+8)')
plt.xlabel('x'); plt.ylabel('Heaviside');
plt.legend()
plt.show()

3

https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html
https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html


NOTE: the vertical lines are an artefact of the plotting - they aren’t part of the function’s graph.

1.2.3 A simple feed forward neural net

Let’s use this concrete example: two inputs x = (x1, x2)
T , with weights, W = (w1, w2)

T = (3, 2)T

and optional bias, b = −1. The activation function is the Heaviside function.

This gives the output,

y = H(n) for n = W Tx+ b = 3x1 + 2x2 − 1.

Hence,

y =

{
1 if n > 0;
0 if n ≤ 0,

=⇒ y =

{
1 if 3x1 + 2x2 − 1 > 0;
0 if 3x1 + 2x2 − 1 ≤ 0.

This can be a binary classifier. Can you see why?

We have just seen that with the given weights and bias,

y = H(n) for n = W Tx+ b = 3x1 + 2x2 − 1 ⇒ y =

{
1 if 3x1 + 2x2 − 1 > 0;
0 if 3x1 + 2x2 − 1 ≤ 0.

In this 3x1 + 2x2 − 1 = 0 represents a straight line in the (x1, x2) plane. In the usual form of
y = mx+ c, this line has equation x2 = (1− 3x1)/2. That is: gradient −3/2, and intercept 1/2.

A point (x1, x2) = (a, b) above this line has 3x1 + 2x2 − 1 > 0 while a point on or below the line
has 3x1 + 2x2 − 1 ≤ 0.
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Therefore - this line could be a decision boundary. Any other line could also, we would just
need different choices for the weights and bias.

Let’s set this up and do some calculations with (x1, x2) = (3, 1) and (x1, x2) = (−2,−1).

y = H(n) for n = (3, 2)

(
x1
x2

)
− 1…

[4]: # set up our column vector of weights, and the bias
W = np.array([[3,2]]).T
b = -1
# find y for input x = (3,1)
X = np.array([[3,1]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = ( 3, 1), y = ', y)
# find y for input x = (-2,-1)
X = np.array([[-2,-1]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = (-2,-1), y = ', y)

For input x = ( 3, 1), y = [[1.]]
For input x = (-2,-1), y = [[0.]]

We can also illustrate this graphically. We plot the line and then the two input points

[5]: x_vals = np.arange(-5, 5.1)
y_vals = (1-3*x_vals)/2
plt.plot(x_vals, y_vals, color='black', label='decision boundary')
plt.plot( 3, 1, 'x', color='blue',label='(x1,x2)=( 3, 1)')
plt.plot(-2,-1, 'x', color='red', label='(x1,x2)=(-2,-1)')
plt.xlabel('x_1'); plt.ylabel('x_2');
plt.annotate('above', [ 0, 3], color='blue')
plt.annotate('below', [-2,-4], color='red')
plt.legend(); # the semi-colon here stops the 'print output' from appearing
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Let’s plot the predictions on a grid of equally spaced points in the x1 and x2 directions.

If we colour the predictions according to y = 0 or y = 1 then this decision boundary will naturally
emerge.

We will create a grid that ranges in both directions over

−7 ≤ x1, x2 ≤ 9 in steps of s = 0.5

[6]: s = .5
x1 = np.arange(-7, 9+s, s)
x2 = np.arange(-7, 9+s, s)
N = x1.shape[0]

[7]: # allocate input and output variables
X = np.zeros([2,1])
y = np.zeros([N,N])
# and our grid points in each direction (note the transpose for x2)
X1grid = np.matlib.repmat(x1,N,1) # repeats x1 N times
X2grid = np.matlib.repmat(x2,N,1).T

[8]: # loop over the grid, vertically for each horizontal point
for i in range(N):

for j in range(N):
X[0,0] = X1grid[i,j] # x1[i]
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X[1,0] = X2grid[i,j] # x2[j]
n = W.T @ X + b
# make a prediction and assign to y_{ij} for x1[i], x2[j]
tmp = np.heaviside(W.T @ X + b, 0)
y[i,j] = tmp

[9]: # determine the locations where the output is zero
indx = (y < 0.5)
# flatten this matrix into a vector, along with the grid points
indx= indx.flatten()
X1grid = X1grid.flatten()
X2grid = X2grid.flatten()

[10]: # plot the zero outputs in red
plt.scatter(X1grid[indx], X2grid[indx], 2, color='red')
# and plot the unit outputs in blue
plt.scatter(X1grid[~indx], X2grid[~indx], 2, color='blue')
# plot the decision boubdary from the weights and bias in black
plt.plot(x_vals, y_vals, color='black')

[10]: [<matplotlib.lines.Line2D at 0x7f8d086cfe10>]

Take a breath - this simple idea, using just this,

y = H(n) for n = W Tx+ b = 3x1 + 2x2 − 1 ⇒ y =

{
1 if 3x1 + 2x2 − 1 > 0;
0 if 3x1 + 2x2 − 1 ≤ 0.
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is the basis of a hugely powerful sub-domain technology in data science and artificial intelligence.

We used this idea to classify the input into two classes.

Let’s now push this idea forward.

1.2.4 Four Classes

Consider this,

(
y1
y2

)
= H

((
1 2

−6 4

)T (
x1
x2

)
+

(
1
2

))
=

(
H(x1 − 6x2 + 1)
H(2x1 + 4x2 + 2)

)
.

Note that the activation function is applied element-by-element.

We can write this in a more generic way as follows: y = σ(n) for n = W Tx+ b.

Here we have the matrix of weights W =
(

1 2
−6 4

)
and bias vector b =

(
1
2

)
.

The possible outputs are:

y =

(
0
0

)
,

(
1
0

)
,

(
0
1

)
and

(
1
1

)
.

With this we can consider four classes: C1, C2, C3 and C4.

With

(
y1
y2

)
=

(
H(x1 − 6x2 + 1)
H(2x1 + 4x2 + 2)

)
.

the decision boundaries are given by x1 − 6x2 + 1 = 0 and 2x1 + 4x2 + 2 = 0.

This neural network will determine whether or not a given point is above or below the line x1 −
6x2 + 1 = 0 in the first component of y.

And it will determine whether or not that point is above or below the line 2x1+4x2+2 = 0 in the
second component of y.

It will then decide to which of the four classes the input belongs.

Let’s see a possible classification scheme…

[11]: x_vals = np.arange(-5, 5.1)
plt.plot(x_vals,-(1+x_vals)/2, color='black')
plt.plot(x_vals, (1+x_vals)/6, color='black')
plt.annotate('C1', [-4, 0], color='blue')
plt.annotate('C2', [-2,-2], color='magenta')
plt.annotate('C3', [ 2,0], color='red')
plt.annotate('C4', [-1, 1], color='green');
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Let’s make predictions on a background grid just as before. By coloring each prediction according
to the four-way scheme above we will see the four classes and the separating decision boundaries
naurally emerge.

We will create a grid for −20 ≤ x1, x2 ≤ 20 in unit steps.

[12]: # here is the grid
s = 1
x1 = np.arange(-20, 20+s, s)
x2 = np.arange(-20, 20+s, s)
N = x1.shape[0]
X1grid = np.matlib.repmat(x1,N,1)
X2grid = np.matlib.repmat(x2,N,1).T

# here is the neural network definition
W = np.array([[1,2],[-6,4]])
b = np.array([[1,2]]).T
# two variable, output and input
y = np.zeros([2,N,N])
X = np.zeros([2,1])

[13]: # traverse the grid, store a prediction for each point
for i in range(N):

for j in range(N):
X[0] = X1grid[i,j]
X[1] = X2grid[i,j]
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tmp = np.heaviside(W.T @ X + b, 0)
y[:,i,j] = tmp[:,0]

[14]: X1grid = X1grid.flatten()
X2grid = X2grid.flatten()

indx0 = (y[0,:] < 0.5)
indx0= indx0.flatten()
indx1 = (y[1,:] < 0.5)
indx1= indx1.flatten()
indx00 = np.logical_and( indx0, indx1)
indx11 = np.logical_and(~indx0,~indx1)
indx01 = np.logical_and( indx0,~indx1)
indx10 = np.logical_and(~indx0, indx1)

[15]: plt.scatter(X1grid[indx00], X2grid[indx00], 2, color='blue')
plt.scatter(X1grid[indx11], X2grid[indx11], 2, color='red')
plt.scatter(X1grid[indx01], X2grid[indx01], 2, color='green')
plt.scatter(X1grid[indx10], X2grid[indx10], 2, color='magenta')
plt.plot(x1,-(1+x1)/2, color='black')
plt.plot(x1, (1+x1)/6, color='black')

[15]: [<matplotlib.lines.Line2D at 0x7f8d48b6dcf8>]
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1.2.5 Artificial Neural Network

Perceptrons can be vertically stacked and fully connected, and they can also be multi-layered
horizontally.

An input signal on the left input layer is propagated through the network by repeating the
weighting, bias and activation steps.

This eventually results in an output on the right-most layer.

This is called feeding forward.

Layers of stacked perceptrons between the input and output layers are called hidden layers.

Networks without hidden layers are often termed shallow.

The diagrams that are present in the Jupyter notebook and slides version of this document are not
included in the PDF version.

This is a simple 2-input/2-output shallow network (i.e. with no hidden layers).

This is a useful notation system…

a0 = x,

n1 = W T
1 a0 + b1,

a1 = σ1(n1),

y = a1.

Note that the weight matrices are square.

This is a 3-input/3-output network with one hidden layer.

The notation system is now easily adjusted…

a0 = x,

n1 = W T
1 a0 + b1,

a1 = σ1(n1),

n2 = W T
2 a1 + b2,

a2 = σ2(n2),

y = a2.

The weight matrices are still square.

This is more general network with one hidden layer.
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a0 = x,

n1 = W T
1 a0 + b1,

a1 = σ1(n1),

n2 = W T
2 a1 + b2,

a2 = σ2(n2),

y = a2.

In this general case the weight matrices are no longer square.

This is a more general network with two hidden layers.

a0 = x,

n1 = W T
1 a0 + b1,

a1 = σ1(n1),

n2 = W T
2 a1 + b2,

a2 = σ2(n2),

n3 = W T
3 a2 + b3,

a3 = σ3(n3),

y = a3.

This assemblage of perceptons is called an artificial neural network. It is a very crude imitation
of the neuronal connections in the brain.

Note that the weight matrix and bias vector have dimensions determined by the size of the layers
they connect.

The architecture possibilities for a neural network are endless, and there are also variants on
the basic scheme introduced above. These are,

• Convolutional Neural Networks

• Recurrent Neural Networks

• … And lots more! It’s a vibrant field!

The feed forward algortithm, for L layers (not including the input layer) is

a0 = x,

for k = 1, 2, . . . , L,

nk = W T
k ak−1 + bk,

ak = σk(nk),

y = aL.

12



1.2.6 Activation Functions

The heaviside function is not differentiable - at least not in the usual and useful sense.

Other frequently used activation functions are the sigmoid (or logistic) function , and the ReLU
- the Rectified Linear Unit.

sigmoid(x) = 1

1 + exp(−x)
and ReLU(x) = max{0, x}

[16]: # here are some useful python function definitions of these
def sigmoid(x):

return 1/(1+np.exp(-x))
def ReLU(x):

return np.maximum(0,x)

[17]: xvals = np.arange(-5,5+0.1,0.1)
plt.plot(xvals, sigmoid(xvals), color='blue', label='sigmoid')
plt.plot(xvals, ReLU(xvals), color='red', label='ReLU')
plt.legend()

[17]: <matplotlib.legend.Legend at 0x7f8d48a9f668>

The sigmoid we have seen before (logistic regression). The ReLU is new to us. Both of these are
in frequent and common use in neural network development.

Here’s an example of how to use them with our previous data W =
(

1 2
−6 4

)
and b =

(
1
2

)
.
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[18]: X = np.array([[1,-3]]).T
W = np.array([[1,2],[-6,4]])
b = np.array([[1,2]]).T

[19]: n = W.T @ X + b
ys = sigmoid(n)
yR = ReLU(n)
print(f'y = sigmoid(n) = \n{ys}\ny = ReLU(n) = \n{yR}, ')

y = sigmoid(n) =
[[9.99999998e-01]
[3.35350130e-04]]
y = ReLU(n) =
[[20]
[ 0]],

1.2.7 Review

We covered just enough, to make progress at pace. We looked at

• Perceptrons…
– weights, biases and various activation functions

• Vertically stacked fully connected perceptrons
• multi-layer perceptrons with hidded layers
• classification by partitioning the plane

This led us to artificial neural networks and will next take us on to deep learning.

There are two things to bring along with us:

1. In the above we knew the weights and biases - they gave us the classes.

2. We have only worked in two dimensions.

In practice our data lies in higher dimensional space. In such cases the data, bias and
output vectors, and the weight matrices, are also high dimensional. Further, when we
get our data set, we will not know the weights and biases in advance and we have to devise
ways to machine learn them.

1.3 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides 13_percep.ipynb
• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
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• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[ ]: %%bash
NBROOTNAME=13_percep
OUTPUTTING=1

if [ $OUTPUTTING -eq 1 ]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi
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