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1.1 What this is about:
You will be introduced to …

• fundamental techniques used in data science, like:
– k-NN: k-Nearest Neighbours;
– data reduction with SVD and PCA;
– linear and polynomial regression;
– perceptrons and support vector machines;
– neural networks and deep learning.

• essential mathematical concepts: just enough: progress at pace
– you are not expected to be a mathematician …
– … but you will be expected to either recall or learn basic facts and techniques in

∗ vectors, matrices, and differential calculus
• essential python programming: just enough: progress at pace

– you are not expected to be a computer scientist …
– … but python will be introduced and used as a tool

∗ only the necessary python syntax, tools and techniques will be taught
∗ our emphasis will be on doing rather than proving
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1.2 Assessment
• 40% coursework (details to follow in a few weeks)
• 60% examination (revision and reflection time will be allocated)

1.3 Study Guide
The Quality Assurance Agency for Higher Education (QAA, https://www.qaa.ac.uk) defines one
academic credit as nominally equal to 10 hours of study (see https://www.qaa.ac.uk/docs/qaa/
quality-code/higher-education-credit-framework-for-england.pdf).

Therefore, this 15 credit block requires nominally 150 hours of your time. Although every one of
us is different and may choose to spend our time in different ways, the following sketch of these
150 hours is fairly accurate.

There will be 33 hours spent on two lectures plus one seminar/lab in each of eleven weeks. There
will be a two hour exam, to which you could assign 25 hours of preparation/revision time. This
accounts for 33 + 2 + 25 = 60 hours.

In addition there is assignment which you could allocate 20 hours to, making up to 80 hours. This
leaves 70 of the 150 hours over. In each of 10 weeks of term there will be a requirement to engage
in set tasks and problems, and to read sections of set books and sources in order to strengthen your
understanding of imparted material as well as to prepare you for the next topics. These 70 hours
average out to 7 hours per week over those 10 weeks.

Note that as a full-time equivalent student you study a 4× 15 = 60 credit week. Using the figures
above you can think of this as 4 × 3 = 12 contact hours plus 4 × 7 = 28 private study hours per
week. This is a 40 hour week.

Note that engaging at this level does not guarantee any outcome, whether that be a bare pass or
an A grade. It is a guideline only. If despite engaging at this level you are struggling to progress
and achieve in the module then seek help and advice.

Further, these ‘40 hours’ have to be high quality inquisitive engagement. Writing and re-writing
notes, procrastinating, and looking at but not engaging with learning materials don’t really count.
You’ll know when you’re actually working - you’ll feel it. Have a read of this https://en.
wikipedia.org/wiki/Flow_(psychology) and make learning a daily rewarding habit.

1.4 Key Concepts: Glossary of Relevant Terms
The first few of these are debateable, evolving and subject to change and interpretation. It’s worth
searching and reading for yourself. These are a fast growing areas.

Data Science A blend of mathematics, computer science and statistics brought to bear with
some form of domain expertise.

Data Analytics Systematic computational analysis of data, used typically to discover value and
insights.

Data Engineering The stewardship, cleaning, warehousing and preparation of data to support
its pipelining to its exploitation.
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Artificial Intelligence The development and deployment of digital systems that can effectively
substitute for humans in tasks beyond the routine application of fixed rules. When you talk to
your home assistant, your phone, or your satellite TV receiver, or your car, or your laptop, and so
on, it has no idea what you are going to say. It doesn’t have a bank of pre-answered questions, but
instead it responds dynamically to what it hears. It has been trained on data, and it has learned
how to respond. Incidentally, how do you think these systems even understand what you said? As
a child, it took you months to begin to understand human speech…

Machine Learning The development and deployment of algorithms that are able to learn from
data without explicit instructions, and then analyze, predict, or otherwise draw inferences, from
unseen data. These algorithms would typically be expected to add measurable value by their
performance.

Consider for example an algorithm that predicted tails for every coin flip. It’s right
half the time - but there’s no value in that.

Learning Machine learning models do not have intrinsic knowledge but instead learn from data.
Typically a data set comprises a list of items each of which has one or more features which correspond
to a label. We’ll see some examples of this below.

We think of the features as being inputs to the machine learning model, and the label as being the
output. Typically we want to be able to feed in new features, and have the model predict the label.

To do this we need a training data set so that the model can learn how to map the features to
the label: the input to the output.

There are three basic learning paradigms:

• Supervised Learning: Here the data is labelled. This means that for a given set of features,
or inputs, we also know their labels, or outputs. Examples of this are where…

– We could have a list of features of insured drivers, such as age, time since they passed
their driving test, type of car, locality, and along with those features a monetary value
on their accident claim. The task would be to learn how much of an insurance premium
to charge to a new customer once those features have been determined.

– We might have a bank of images of handwritten digits, and for each image we know
what digit is represented. The MNIST database of handwritten digits, see http://
yann.lecun.com/exdb/mnist/ or https://en.wikipedia.org/wiki/MNIST_database
for example, is a well known example of this. The task is to learn how to predict what
digit is captured by a new image. This could be used in ANPR systems for example,
https://en.wikipedia.org/wiki/Automatic_number-plate_recognition.

• Unsupervised Learning: This is where we only know the features and we want to cluster
the data in such a way that a set of similar features can be assiociated with some common
characteristic (the label).

– This can be used on data where the anlayst doesn’t initially know what they are looking
for. For example, a retailer might have a mass of data of customer age, locale, average
spend, types of purchased item, time of day of purchase, day of week of purchase, time
of year etc. What characteristics can be used to group these customers? How can
advertising be targetted?
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– principal component analysis seeks to re-orient data so that its dominant statistical
properties are revealed. We’ll see this later.

• Reinforcement Learning: This seeks to strike a balance between the two above. There are
no labels, but instead, as time progresses the learning algorithm has a reward variable which
is increased when an action it has learned has resulted in a measurable benefit. Over time
the algorithm develops a policy to inform its actions.

This last is a major topic and will not be covered in these lectures. We will see examples of the
first two.

Regression and Classification Our algorithms will be developed to perform one of the following
tasks:

• Regression: here the output, the label, can take any value in a continuous set. For exam-
ple, the height of a tree, given local climate, soil type, genus, age since planting, could be
considered to be any non-negative real number (although not with equal probability).

• Classification: in this case the label will be deemed to be one of a certain class. For example,
in the handwritten digits example above, the output will be one of the digits {0, 1, 2, 3, . . . , 9}.

Some of the algorithms we study will be able to perform both the regression and clustering tasks,
although we wont always delve deeply into both capabilities.

1.5 Reading List
For the data science, our main sources of information are as follows:

• MML: Mathematics for Machine Learning, by Marc Peter Deisenroth, A. Aldo Faisal, and
Cheng Soon Ong. Cambridge University Press. https://mml-book.github.io.

• MLFCES: Machine Learning: A First Course for Engineers and Scientists, by Andreas Lind-
holm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön. Cambridge University Press.
http://smlbook.org.

• FCLA: A First Course in Linear Algebra, by Ken Kuttler, https://math.libretexts.org/
Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)

• AP: Applied Probability, by Paul Pfeiffer https://stats.libretexts.org/Bookshelves/
Probability_Theory/Applied_Probability_(Pfeiffer)

• IPDS: Introduction to Probability for Data Science, by Stanley H. Chan, https://
probability4datascience.com

• SVMS: Support Vector Machines Succinctly, by Alexandre Kowalczyk, https://www.
syncfusion.com/succinctly-free-ebooks/support-vector-machines-succinctly

• VMLS: Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares, by
Stephen Boyd and Lieven Vandenberghe, https://web.stanford.edu/~boyd/vmls/

All of the above can be accessed legally and without cost.

There are also these useful references for coding:

• PT: python: https://docs.python.org/3/tutorial
• NP: numpy: https://numpy.org/doc/stable/user/quickstart.html
• MPL: matplotlib: https://matplotlib.org

4

https://mml-book.github.io
http://smlbook.org
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)
https://stats.libretexts.org/Bookshelves/Probability_Theory/Applied_Probability_(Pfeiffer)
https://probability4datascience.com
https://probability4datascience.com
https://www.syncfusion.com/succinctly-free-ebooks/support-vector-machines-succinctly
https://www.syncfusion.com/succinctly-free-ebooks/support-vector-machines-succinctly
https://web.stanford.edu/~boyd/vmls/
https://docs.python.org/3/tutorial
https://numpy.org/doc/stable/user/quickstart.html
https://matplotlib.org


The capitalized abbreviations will be used throughout to refer to these sources. For example, we
could say See [MLFCES, Chap 2, Sec. 1] for more discussion of Supervised Learning. This
would just be a quick way of saying

Look in Section 1, of Chapter 2, of Machine Learning: A First Course for Engineers
and Scientists, by Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B.
Schön, for more discussion of supervised learning.

There will be other sources shared as we go along. For now these will get us a long way.

1.6 Coding: python and some data sets
For each of our main topics we will see some example data, discuss a means of working with it, and
then implement those means in code. We will develop enough theory so as to understand how the
codes work, but our main focus will be the intution behind the method, and the effective problem
solving using code.

We choose python because its use in both the commercial and academic data science arena seems
to be pre-eminent.

The data science techniques and algorithms we will study, and the supporting technology like graph-
ics and number crunching, are implemented in well-known and well-documented python libraries.
These are the main ones we will use:

• matplotlib: used to create visualizations, plotting 2D graphs in particular.
• numpy: this is numerical python, it is used for array processing which for us will usually mean

the numerical calculations involving vectors and matrices.
• scikit-learn: a set of well documented and easy to use tools for predictive data analysis.
• pandas: a data analysis tool, used for the storing and manipulation of data.
• seaborn: a data visualization library for attractive and informative statistical graphics.

There will be others, but these are the main ones. Let’s look at some examples of how to use these

1.7 Binder, Anaconda, Jupyter - a first look at some data
Eventually we will use the anaconda distribution to access python and the libraries we need. The
coding itself will be carried out in a Jupyter notebook. We’ll go through this in an early lab session.
We’ll start though with Binder: click here:

https://mybinder.org/v2/gh/variationalform/FML.git/HEAD

Let’s see some code and some data. In the following cell we import seaborn and look at the names
of the built in data sets. The seaborn library, https://seaborn.pydata.org, is designed for
data visualization. It uses matplotlib, https://matplotlib.org, which is a graphics library for
python.

If you want to dig deeper, you can look at https://blog.enterprisedna.co/
how-to-load-sample-datasets-in-python/ and https://github.com/mwaskom/seaborn-data
for the background - but you don’t need to.

[ ]: import seaborn as sns
# we can now refer to the seaborn library functions using 'sns'
# note that you can use another character string - but 'sns' is standard.
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# note that # is used to write 'comments'
# Now let's get the names of the built-in data sets.
sns.get_dataset_names()

# type SHIFT=RETURN to execute the highlighted (active) cell

1.7.1 The taxis data set

[ ]: # let's take a look at 'taxis'
dft = sns.load_dataset('taxis')
# this just plots the first few lines of the data
dft.head()

[ ]: # this will plot the last few lines... There are 6433 records (Why?)
dft.tail()

What we are seeing here is a data frame. It is furnished by the pandas library: https://pandas.
pydata.org which is used by the seaborn library to store its example data sets.

Each row of the data frame corresponds to a single data point, which we could also call an
observation or measurement (depending on context).

Each column (except the left-most) corresponds to a feature of the data point. The first column
is just an index giving the row number. Note that this index starts at zero - so, for example, the
third row will be labelled/indexed as 2. Be careful of this - it can be confusing.

In this, the variable dft is a pandas data frame: dft = ‘data frame taxis’

[ ]: # let's print the data frame...
print(dft)

Visualization Rows and rows of numbers aren’t that helpful.

seaborn makes visualization easy - here is a scatter plot of the data.

[ ]: sns.scatterplot(data=dft, x="distance", y="fare")

THINK ABOUT: it looks like fare is roughly proportional to distance. But what
could cause the outliers?

[ ]: # here's another example
sns.scatterplot(data=dft, x="pickup_borough", y="tip")

[ ]: # is the tip proportional to the fare?
sns.scatterplot(data=dft, x="fare", y="tip")

[ ]: # is the tip proportional to the distance?
sns.scatterplot(data=dft, x="distance", y="tip")
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1.7.2 The tips data set

Let’s look now at the tips data set. Along the way we’ll see a few more ways we can use the data
frame object

[ ]: # load the data - dft: data frame tips
# note that this overwrites the previous 'value/meaning' of dft
dft = sns.load_dataset('tips')
dft.head()

An extensive list of data frame methods/functions can be found here: https://pandas.pydata.
org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame Let’s
look at some of them

[ ]: print(dft.info)
print('The shape of the data frame is: ', dft.shape)
print('The size of the data frame is: ', dft.size)
print('Note that 244*7 =', 244*7)

Visualization Again, numbers aren’t always that helpful. Plots often give us more insight.

[ ]: dft.plot()

[ ]: sns.scatterplot(data=dft, x="total_bill", y="tip")

Statistics and Probability You’re assumed to be familiar with basic terms and concepts in
these areas, but we will revise and review those that we need later.

We can get some basic stats for our data set with the describe() method…

[ ]: # here are some descriptive statistics
dft.describe()

1.7.3 The anscombe data set

This is pretty famous. There are four sets of 11 coordinate pairs. When plotted they look completely
different. But they have the same summary statistics (at least the common ones).

See https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Image Credit: https://upload.wikimedia.org/wikipedia/commons/7/7e/Julia-anscombe-plot-1.png

Let’s load the data set and take a look at it - we can look at the head and tail of the table just as
we did above.

[ ]: dfa = sns.load_dataset('anscombe')
# look at how we get an apostrophe in the string...
print("The size of Anscombe's data set is:", dfa.shape)

[ ]: dfa.head()
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[ ]: dfa.tail()

It looks like the four data sets are in the dataset column. How can we extract them as separate
items?

Well, one way is to print the whole dataset and see which rows correspond to each dataset. Like
this…

[ ]: print(dfa)

From this and the head and tail output above we can infer that there are four data sets: I, II, III
and IV. They each contain 11 pairs (x, y).

• The first set occupies rows 0, 1, 2, . . . , 10
• The second set occupies rows 11, 12, . . . , 21
• The third set occupies rows 22, 23, . . . , 32
• The fourth set occupies rows 33, 34, . . . , 43

However, this kind of technique is not going to be useful if we have a data set with millions of data
points (rows). We certainly wont want to print them all like we did above.

Is there another way to determine the number of distinct feature values in a given column of the
data frame?

Fortunately, yes. We want to know how many different values the dataset column has. We can
do it like this.

[ ]: dfa.dataset.unique()

We can count the number of different ones automatically too, by asking for the shape of the
returned value. Here we go:

[ ]: dfa.dataset.unique().shape

This tell us that there are 4 items - as expected. Don’t worry too much about it saying (4,)
rather that just 4. We’ll come to that later when we discuss numpy (Numerical python: https:
//numpy.org).

Now, we want to extract each of the four datasets as separate data sets so we can work with them.
We can do that by using loc to get the row-wise locations where each value of the dataset feature
is the same.

For example, using the hints here https://stackoverflow.com/questions/17071871/
how-do-i-select-rows-from-a-dataframe-based-on-column-values, to get the data for the
sub-data-set I we can do this:

[ ]: dfa.loc[dfa['dataset'] == 'I']

Now we have this subset of data we can examine it - with a scatter plot for example.

[ ]: sns.scatterplot(data=dfa.loc[dfa['dataset'] == 'I'], x="x", y="y")
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To really work properly with each subset we should extract them and give each of them a name
that is meaningful.

[ ]: dfa1 = dfa.loc[dfa['dataset'] == 'I']
dfa2 = dfa.loc[dfa['dataset'] == 'II']
dfa3 = dfa.loc[dfa['dataset'] == 'III']
dfa4 = dfa.loc[dfa['dataset'] == 'IV']

Now let’s look at each of the four data sets in a scatter plot, and use the describe method to
examine the summary statistics.

The outcome is quite surprising…

dataset 1
[ ]: sns.scatterplot(data=dfa1, x="x", y="y")

dfa1.describe()

dataset 2
[ ]: sns.scatterplot(data=dfa2, x="x", y="y")

dfa2.describe()

dataset 3
[ ]: sns.scatterplot(data=dfa3, x="x", y="y")

dfa3.describe()

dataset 4
[ ]: sns.scatterplot(data=dfa4, x="x", y="y")

dfa4.describe()

1.8 Exercises
For the taxis data set:

1. Produce a scatterplot of “dropoff_borough” vs. “tip”
2. Plot the dependence of fare on distance.

1: sns.scatterplot(data=ds, x="dropoff_borough", y="tip")
2: sns.scatterplot(data=ds, x="distance", y="tip")

For the tips data set:

1. What is the standard deviation of the tips?
2. Plot the scatter of tip against the total bill
3. Plot the scatter of total bill against day
4. Plot the scatter of tip against gender

1: ds.describe()
2: sns.scatterplot(data=ds, x="total_bill", y="tip")
3: sns.scatterplot(data=ds, x="day", y="total_bill")
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4: sns.scatterplot(data=ds, x="sex", y="tip")

1.9 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Set OUTPUTTING=1 below
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides 1_intro.ipynb
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Ignore this - it is done in 2_vectors

For the Anscombe data set:

1. Which of the summary statistics for x are the same or similar for each subset?
2. Which of the summary statistics for y are the same or similar for each subset?

Look at the diamonds data set

1. How many diamonds are listed there? How many attributes does each have?
2. Scatter plot price against carat.

1: ds = sns.load_dataset('diamonds'); ds.shape: 53940 and 10
2: sns.scatterplot(data=ds, x="carat", y="price")

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[ ]: %%bash
NBROOTNAME='1_intro'
OUTPUTTING=1

if [ $OUTPUTTING -eq 1 ]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/
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jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

[ ]:
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