
2_vectors

January 12, 2024

1 Vectors
variationalform https://variationalform.github.io/

Just Enough: progress at pace https://variationalform.github.io/

https://github.com/variationalform

Simon Shaw https://www.brunel.ac.uk/people/simon-shaw.

This work is licensed under CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International)

Visit http://creativecommons.org/licenses/by-sa/4.0/ to see the terms.

This document uses python

and also makes use of LaTeX

in Markdown

1.1 What this is about:
You will be introduced to …

• Vectors as a way to think about points in space.
• The arithmetic (adding and subtracting) of vectors.
• Ways to measure the size - or length - of a vector.
• The numpy library (or package) for working with vectors in python.

We’ll then see how to interpret data as vectors in high dimensional space. This will involve ab-
straction in that although it’s easy for us to visualize a point in three dimensions, data may live in
many dimensions.

As usual our emphasis will be on doing rather than proving: just enough: progress at pace.

1.2 Assigned Reading
For this worksheet you should read sections 1.1 - 1.3 and 3.1, 3.2 of [VMLS] for background to the
linear algebra of vectors, and also Appendix D of [DSML] if you want to read more about python
and numpy.

• VMLS: Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares, by
Stephen Boyd and Lieven Vandenberghe, https://web.stanford.edu/~boyd/vmls/

1

https://variationalform.github.io/
https://variationalform.github.io/
https://github.com/variationalform
https://www.brunel.ac.uk/people/simon-shaw
https://web.stanford.edu/~boyd/vmls/

• DSML: Data Science and Machine Learning, Mathematical and Statistical Methods by Dirk
P. Kroese, Zdravko I. Botev, Thomas Taimre, Radislav Vaisman, https://people.smp.uq.
edu.au/DirkKroese/DSML and https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.
pdf

Further accessible material can be found in [FCLA], and the early part of Chapter 1 of [SVMS].
Advanced material is available in Chapters 2 and 3 of [MML].

• MML: Mathematics for Machine Learning, by Marc Peter Deisenroth, A. Aldo Faisal, and
Cheng Soon Ong. Cambridge University Press. https://mml-book.github.io.

• FCLA: A First Course in Linear Algebra, by Ken Kuttler, https://math.libretexts.org/
Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)

• SVMS: Support Vector Machines Succinctly, by Alexandre Kowalczyk, https://www.
syncfusion.com/succinctly-free-ebooks/support-vector-machines-succinctly

• VMLS: Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares, by
Stephen Boyd and Lieven Vandenberghe, https://web.stanford.edu/~boyd/vmls/

All of the above can be accessed legally and without cost.

There are also these useful references for coding:

• PT: python: https://docs.python.org/3/tutorial
• NP: numpy: https://numpy.org/doc/stable/user/quickstart.html
• MPL: matplotlib: https://matplotlib.org

1.3 Vectors
A vector is a row or column of real numbers enclosed in brackets. For example, these

v = (3,−2, 1), b =

6

−3
2.5
−1
0

show a row vector in R3, and a column vector in R5, where Rn denotes the n-dimensional set of
real numbers (to get feel for this we live in R3 - up/down, forward/backward and left/right). We
will denote vectors by lower case bold letters. A vector v in Rn, written as ≿ ∈ Rn is said to have
dimension n.

Note that we use commas to make it clear that the numbers are separate entities, but the commas
are not part of the vector. We often think of vectors as having physical meaning, and then we
diagrammatically represent them with arrows.

For example, the diagram here https://en.wikipedia.org/wiki/Euclidean_vector#/media/
File:Position_vector.svg, taken from https://en.wikipedia.org/wiki/Euclidean_vector,
shows a row vector in 2 dimensions, joining the origin at O to the coordinate (x, y) = (2, 3) at A.

Diagram not reproduced here

This vector has components of length 2 in the x direction and of length 3 in the y direction. The
overall length of the vector is then

√
22 + 32 =

√
13 ≈ 3.605 by Pythagoras’s theorem. This might

2

https://people.smp.uq.edu.au/DirkKroese/DSML
https://people.smp.uq.edu.au/DirkKroese/DSML
https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf
https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf
https://mml-book.github.io
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)
https://www.syncfusion.com/succinctly-free-ebooks/support-vector-machines-succinctly
https://www.syncfusion.com/succinctly-free-ebooks/support-vector-machines-succinctly
https://web.stanford.edu/~boyd/vmls/
https://docs.python.org/3/tutorial
https://numpy.org/doc/stable/user/quickstart.html
https://matplotlib.org
https://en.wikipedia.org/wiki/Euclidean_vector#/media/File:Position_vector.svg
https://en.wikipedia.org/wiki/Euclidean_vector#/media/File:Position_vector.svg
https://en.wikipedia.org/wiki/Euclidean_vector

for example represent a person cycling approximately north-east at 3.6 km/h - or 2 km/h east and,
simultaneously, 3 km/h north.

Diagram not reproduced here

Note that the coordinate (2, 3) at A in the diagram could easily be confused with a row vector. Such
overloading of notation is common in maths, and usually context makes it clear what is intended.

This shouldn’t happen for us though, because from now on we will always work with column vectors,
and switch between column and row forms using the the transpose operation. The transpose of
a vector is denoted with a superscript T and swaps the row into a column and vice-versa. For
example,

vT =

 3
−2
1

 , bT = (6,−3, 2.5,−1, 0).

1.4 python: Binder, Anaconda and Jupyter
We will use binder, and then the anaconda distribution to access python and the libraries we need.
The coding itself will be carried out in Jupyter notebooks. We’ll go through this in an early lab
session so you can get started with ‘hands on’ machine learning.

1.5 Using numpy to represent vectors
The numpy module (or library) is the main tool for scientific computing in python. It stands for
numerical python, and it will be a key tool for us. See https://numpy.org

We load in the numpy package and abbreviate it with np as follows. This syntax is very standard.
You can use something other than np if you like, but you’ll be swimming against the tide.

[1]: import numpy as np

Now we can set up two vectors as numpy arrays, and print them out, as follows,

[2]: v = np.array([3,-2,1])
b = np.array([[6], [-3], [2.5], [-1], [0]])
print('v = ', v, ' and b = ', b)

v = [3 -2 1] and b = [[6.]
[-3.]
[2.5]
[-1.]
[0.]]

This looks a bit messy - let’s try again, forcing a line break

[3]: print(v, '\n', b)

[3 -2 1]
[[6.]

3

https://numpy.org

[-3.]
[2.5]
[-1.]
[0.]]

This is a bit better - you can see how numpy handles row and column vectors.

We’ll often not worry about the distinction between row and column vectors when using numpy. It’s
easier (i.e. less typing) to set up the row vector above, and we’ll often take that route. Although
when we write vectors mathematically we will always use column vectors.

1.6 Using numpy for transpose.
We can write b.T for bT , but the overall effect is is a bit unexpected.

[4]: print('v = ', v.T, ' and b = ', b.T)

v = [3 -2 1] and b = [[6. -3. 2.5 -1. 0.]]

It’s a bit hard to see what is going on - the key thing to remember is that these objects are arrays
in computer memory, and not mathematical vectors.

You can get the behaviour you expect with this.

[5]: v = np.array([[3,-2,1]])
print(v.T)

[[3]
[-2]
[1]]

Alternatively, you can force the shape by using the shape attribute - take a look at these… (note
that # is used to write comments)

[6]: # this gives a list of numbers.
a = np.array([3, -2, 1])
print(a)
ask for the shape - it is just (3,)
a.shape
force the shape to be 3-row by 1-column
a.shape = (3,1)
print(a)
now print the transpose
print(a.T)

[3 -2 1]
[[3]
[-2]
[1]]
[[3 -2 1]]

Here is a different approach…

4

[7]: # force b to have one row - a row vector
b = np.array([[3, -2, 1]])
print(b)
print('The shape of b is ', b.shape)
and then transpose it to get a column vector
b = np.array([[3, -2, 1]]).T
print(b)

[[3 -2 1]]
The shape of b is (1, 3)
[[3]
[-2]
[1]]

For a bit more discussion see e.g. https://stackoverflow.com/questions/17428621/
python-differentiating-between-row-and-column-vectors

We wont have to worry too much about these subtle things - the python libraries that we will use
will take care of all of this bookkeeping.

1.7 Addition and Subtraction
Vectors of the same shape can be added or subtracted, component by component. For example,
forming g = a− p with

a =

 3
−2
1

 and p =

 5
2

−10

 then gives g =

 3− 5
−2− 2

1− (−10)

 =

 −2
−4
11

 .

You can check that a = g + p, as we would expect.

A visual demonstration of this addtion process can be accessed here: https://www.geogebra.
org/m/hm4haajh in two dimensions, and here https://www.geogebra.org/m/drvu2f66 in three
dimensions. The idea is similar in higher dimensions but harder to draw.

1.8 Vector - scalar multiplication
A vector can be multiplied by a scalar just by multiplying each element of the vector by that same
scalar. For example:

if y =

−3
16
1

1089
15

 then −3y =

9

−48
−3

−3267
−45

1.9 Using numpy for vector calculations
We’ll set up the vectors a and p given above as numpy arrays and then show how to do these
operations in python.

5

https://stackoverflow.com/questions/17428621/python-differentiating-between-row-and-column-vectors
https://stackoverflow.com/questions/17428621/python-differentiating-between-row-and-column-vectors
https://www.geogebra.org/m/hm4haajh
https://www.geogebra.org/m/hm4haajh
https://www.geogebra.org/m/drvu2f66

[8]: a = np.array([3, -2, 1])
p = np.array([5, 2, -10])
g = a-p
print(g)
a = g+p
print(a)

[-2 -4 11]
[3 -2 1]

[9]: y = np.array([-3, 16, 1, 1089, 15])
z = -3*y
print(z)

[9 -48 -3 -3267 -45]

1.10 Vector Norms
In mathematics the word norm is used to denote the size of something. Depending on what that
‘something’ is, its ‘size’ can be an ‘obvious’ property, or much more abstract. The most obvious
way to measure the size of a vector is to use its length. We’ll start by examining that, and then
move on to more general notions.

1.10.1 The Vector 2-norm (ℓ2, or Euclidean, or Pythagorean, distance)

In general, for a vector v ∈ Rn (a point beloging to n-dimensional space), with n components v1,
v2, . . ., vn, we denote its Pythagorean (or Euclidean) length by the so-called 2-norm:

∥v∥2 =
√

v21 + v22 + · · ·+ v2n.

If you visualize the 2-norm you will probably think of the ‘as the crow flies’ distance between any
two points A and B.

Example: Suppose we have this vector

u =

−3
2
4

−1

Then,

∥u∥2 =
√
(−3)2 + 22 + 42 + (−1)2 =

√
9 + 4 + 16 + 1 =

√
30 ≈ 5.477 . . .

Let’s see how to do this with numpy. We’ll use the linear algebra submodule, https://numpy.
org/doc/stable/reference/routines.linalg.html, and the norm function, https://numpy.
org/doc/stable/reference/generated/numpy.linalg.norm.html.

6

https://numpy.org/doc/stable/reference/routines.linalg.html
https://numpy.org/doc/stable/reference/routines.linalg.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html

[10]: u = np.array([-3, 2, 4, -1])
print('||u||_2 = ', np.linalg.norm(u))
We can also specify the '2'
print('||u||_2 = ', np.linalg.norm(u, 2))

||u||_2 = 5.477225575051661
||u||_2 = 5.477225575051661

1.10.2 The Vector p-norm (ℓp, or Minkowski, norms)

Being able to specify the power/root of 2 is useful because there are other norms corresponding to
other values of the power and root.

More generally, we can use the p-norm for any p ≥ 1 where

∥v∥p =
{

p
√
|v1|p + |v2|p + · · ·+ |vn|p, if 1 ≤ p < ∞;

max{|vk| : k = 1, 2, . . . , n}, if p = ∞.

These norms will be very useful to us in the applications we study later. Often the p-norm will also
be referred to as the ℓp norm.

Note that p < 1 is not allowed in this definition. That doesn’t, however, stop some casual usage
whereby the definition above is extended to p < 1 to get ℓp norms for p < 1. This means that
quantities like an ℓ1/2, given by ∥v∥1/2, get used as ‘norms’.

∥v∥p =

{
p

√
|v1|p + |v2|p + · · ·+ |vp|p, if 1 ≤ p < ∞;

max{|vk| : k = 1, 2, . . . , n}, if p = ∞.

Strictly speaking these aren’t norms when p < 1 (see {Chap. 3, MML} https://mml-book.
github.io), although in practice these quantities can be useful. We could call them phoney norms.

An extreme example is the ℓ0 norm. This gives the number of non-zero elements in a vector. It is
not a norm, but is nevertheless useful when sparsity is of interest.

Apart from the Euclidean/Pythagorean 2-norm that we saw above, the 1-norm and the ∞-norms
are also of importance.

1.10.3 The Vector 1-norm (ℓ1, Manhattan, or taxicab, distance)

The 1 norm is often referred to as the Manhattan distance because (in 2D) the we can get from point
A to point B by only moving along coordinate directions. This can be an ‘L-shape’ or any number
of staircase paths. See for example, https://en.wikipedia.org/wiki/Taxicab_geometry

Diagram not reproduced here

This is akin to how one moves from one point to another in the street-grid system in Manhattan,
either on foot or in a taxi.

7

https://mml-book.github.io
https://mml-book.github.io
https://en.wikipedia.org/wiki/Taxicab_geometry

1.10.4 The Vector ∞-norm (ℓ∞, ‘max’, or Chebychev, norm)

This doesn’t really measure the distance from A to B but instead just records the largest (in
absolute value) length along the coordinate directions.

Example: Suppose we have this vector

w =

3

−2
−4
1

Then,

∥w∥∞ = max{|wk| : k = 1, 2, 3, 4} = 4

Example Let’s work some more examples by hand and then with numpy. Let,

w =
(
− 19, 18, 2, 0, 0,−8, 34, 0,−57

)T
Then

∥w∥2 =
√
361 + 324 + 4 + 0 + 0 + 64 + 1156 + 0 + 3249 =

√
5158 ≈ 71.819 . . .

Also,

∥w∥1 = 19 + 18 + 2 + 0 + 0 + 8 + 34 + 0 + 57 = 138, ∥w∥∞ = 57 and ∥w∥0 = 6

Let’s see these in numpy.

[11]: w = np.array([-19, 18, 2, 0, 0, -8, 34, 0, -57])
print('||w||_2 = ', np.linalg.norm(w,2))
print('||w||_1 = ', np.linalg.norm(w,1))
print('||w||_inf = ', np.linalg.norm(w,np.inf)) # note how we denote infinity
print('||w||_0 = ', np.linalg.norm(w,0))

||w||_2 = 71.8192174839019
||w||_1 = 138.0
||w||_inf = 57.0
||w||_0 = 6.0

8

1.11 Some data - data as vectors
Let’s now look at some data. Just as before, in the following cell we import seaborn and look at the
names of the built-in data sets. The seaborn library, https://seaborn.pydata.org, is designed
for data visualization. It uses matplotlib, https://matplotlib.org, which is a graphics library
for python.

More detail on the datasets can be found here: https://github.com/mwaskom/seaborn-data/
blob/master/README.md

If you want to dig deeper, you can look at https://blog.enterprisedna.co/
how-to-load-sample-datasets-in-python/ and https://github.com/mwaskom/seaborn-data
for the background - but you don’t need to.

The first part of the following material we have seen before. This is a recap.

[12]: import seaborn as sns
we can now refer to the seaborn library functions using 'sns'
note that you can use another character string - but 'sns' is standard.

Now let's get the names of the built-in data sets.
sns.get_dataset_names()

type SHIFT=RETURN to execute the highlighted (active) cell

[12]: ['anagrams',
'anscombe',
'attention',
'brain_networks',
'car_crashes',
'diamonds',
'dots',
'dowjones',
'exercise',
'flights',
'fmri',
'geyser',
'glue',
'healthexp',
'iris',
'mpg',
'penguins',
'planets',
'seaice',
'taxis',
'tips',
'titanic']

9

https://seaborn.pydata.org
https://matplotlib.org
https://github.com/mwaskom/seaborn-data/blob/master/README.md
https://github.com/mwaskom/seaborn-data/blob/master/README.md
https://blog.enterprisedna.co/how-to-load-sample-datasets-in-python/
https://blog.enterprisedna.co/how-to-load-sample-datasets-in-python/
https://github.com/mwaskom/seaborn-data

1.11.1 The taxis data set

[13]: # let's take a look at 'taxis'
dft = sns.load_dataset('taxis')
this just plots the first few lines of the data
dft.head()

[13]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0 2.15
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0 0.00
2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5 2.36
3 2019-03-10 01:23:59 2019-03-10 01:49:51 1 7.70 27.0 6.15
4 2019-03-30 13:27:42 2019-03-30 13:37:14 3 2.16 9.0 1.10

tolls total color payment pickup_zone \
0 0.0 12.95 yellow credit card Lenox Hill West
1 0.0 9.30 yellow cash Upper West Side South
2 0.0 14.16 yellow credit card Alphabet City
3 0.0 36.95 yellow credit card Hudson Sq
4 0.0 13.40 yellow credit card Midtown East

dropoff_zone pickup_borough dropoff_borough
0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan
3 Yorkville West Manhattan Manhattan
4 Yorkville West Manhattan Manhattan

Recall that what we are seeing here is a data frame.

It is furnished by the pandas library: https://pandas.pydata.org which is used by the seaborn
library to store its example data sets.

In this, the variable dft is a pandas data frame: dft = data frame taxi

Each row of the data frame corresponds to a single data point, which we could also call an
observation or measurement (depending on context).

Each column (except the left-most) corresponds to a feature of the data point. The first column
is just an index giving the row number. Note that this index starts at zero - so, for example, the
third row will be labelled/indexed as 2. Be careful of this - it can be confusing.

The head and tail functions are useful because they attempt to make the data set readable. If
you try a raw print then the output is much less friendly.

[14]: # in this, the variable dft is a pandas data frame: dft = data frame taxis
print(dft)

pickup dropoff passengers distance fare \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0

10

https://pandas.pydata.org

2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5
3 2019-03-10 01:23:59 2019-03-10 01:49:51 1 7.70 27.0
4 2019-03-30 13:27:42 2019-03-30 13:37:14 3 2.16 9.0
… … … … … …
6428 2019-03-31 09:51:53 2019-03-31 09:55:27 1 0.75 4.5
6429 2019-03-31 17:38:00 2019-03-31 18:34:23 1 18.74 58.0
6430 2019-03-23 22:55:18 2019-03-23 23:14:25 1 4.14 16.0
6431 2019-03-04 10:09:25 2019-03-04 10:14:29 1 1.12 6.0
6432 2019-03-13 19:31:22 2019-03-13 19:48:02 1 3.85 15.0

tip tolls total color payment pickup_zone \
0 2.15 0.0 12.95 yellow credit card Lenox Hill West
1 0.00 0.0 9.30 yellow cash Upper West Side South
2 2.36 0.0 14.16 yellow credit card Alphabet City
3 6.15 0.0 36.95 yellow credit card Hudson Sq
4 1.10 0.0 13.40 yellow credit card Midtown East
… … … … … … …
6428 1.06 0.0 6.36 green credit card East Harlem North
6429 0.00 0.0 58.80 green credit card Jamaica
6430 0.00 0.0 17.30 green cash Crown Heights North
6431 0.00 0.0 6.80 green credit card East New York
6432 3.36 0.0 20.16 green credit card Boerum Hill

dropoff_zone pickup_borough dropoff_borough
0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan
3 Yorkville West Manhattan Manhattan
4 Yorkville West Manhattan Manhattan
… … … …
6428 Central Harlem North Manhattan Manhattan
6429 East Concourse/Concourse Village Queens Bronx
6430 Bushwick North Brooklyn Brooklyn
6431 East Flatbush/Remsen Village Brooklyn Brooklyn
6432 Windsor Terrace Brooklyn Brooklyn

[6433 rows x 14 columns]

[15]: # seaborn makes visualization easy - here is a scatter plot of the data.
sns.scatterplot(data=dft, x="distance", y="fare")

[15]: <AxesSubplot:xlabel='distance', ylabel='fare'>

11

[16]: # here's another example
sns.scatterplot(data=dft, x="pickup_borough", y="tip")

[16]: <AxesSubplot:xlabel='pickup_borough', ylabel='tip'>

12

[17]: # is the tip proportional to the fare?
sns.scatterplot(data=dft, x="fare", y="tip")

[17]: <AxesSubplot:xlabel='fare', ylabel='tip'>

[18]: sns.scatterplot(data=dft, x="distance", y="tip")

[18]: <AxesSubplot:xlabel='distance', ylabel='tip'>

13

1.12 Data as Vectors
Each row of the data set above gives the specific feature values for one particular observation, or
measurement. This is a single data point.

We can get the names of the features using dft.columns as follows…

[19]: dft.columns

[19]: Index(['pickup', 'dropoff', 'passengers', 'distance', 'fare', 'tip', 'tolls',
'total', 'color', 'payment', 'pickup_zone', 'dropoff_zone',
'pickup_borough', 'dropoff_borough'],
dtype='object')

In this case, for each data point:

• the observation, or measurement, is a single taxi ride.
• the features of that data point are:
• ‘pickup’
• ‘dropoff’
• ‘passengers’
• ‘distance’
• ‘fare’
• ‘tip’
• ‘tolls’
• ‘total’

14

• ‘color’
• ‘payment’
• ‘pickup_zone’
• ‘dropoff_zone’
• ‘pickup_borough’
• ‘dropoff_borough’

Look again at the first six entries of the data set

[20]: dft.head(6)

[20]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0 2.15
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0 0.00
2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5 2.36
3 2019-03-10 01:23:59 2019-03-10 01:49:51 1 7.70 27.0 6.15
4 2019-03-30 13:27:42 2019-03-30 13:37:14 3 2.16 9.0 1.10
5 2019-03-11 10:37:23 2019-03-11 10:47:31 1 0.49 7.5 2.16

tolls total color payment pickup_zone \
0 0.0 12.95 yellow credit card Lenox Hill West
1 0.0 9.30 yellow cash Upper West Side South
2 0.0 14.16 yellow credit card Alphabet City
3 0.0 36.95 yellow credit card Hudson Sq
4 0.0 13.40 yellow credit card Midtown East
5 0.0 12.96 yellow credit card Times Sq/Theatre District

dropoff_zone pickup_borough dropoff_borough
0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan
3 Yorkville West Manhattan Manhattan
4 Yorkville West Manhattan Manhattan
5 Midtown East Manhattan Manhattan

• The first column can be ignored - that is just a label for each observation and has nothing to
do with the taxi ride data.

• The pickup and dropoff columns are dates and times, we’ll ignore these for now, but we will
come back to them in the lab session.

• The next six columns are numbers, these will fit nicely into elements one to six of a list of
numbers.

• We’ll also ignore the remaining columns, and so we have arrived at a way of represent-
ing each data point as a vector.

Let’s work through an example of how to do this.

First, note that dft.iat[0,0] will tell us what is in the first position of the first row. Again
BEWARE - indexing starts at zero. This means for example that dft.iat[5,7] tells us what is

15

in the eighth column of the sixth row.

An alternative to that is to use the fact that, dft.loc[5] refers to the entire sixth row, while
dft.loc[5].iat[7] refers to the eighth element in the sixth row.

We can see all of these pieces of information with a print statement. Note the use of \n to get
new lines.

[21]: print('dft.iat[5,7] = ', dft.iat[5,7])
print('dft.loc[5].iat[7] = ', dft.loc[5].iat[7],'\n')
print('dft.loc[5] = ')
print(dft.loc[5])

dft.iat[5,7] = 12.96
dft.loc[5].iat[7] = 12.96

dft.loc[5] =
pickup 2019-03-11 10:37:23
dropoff 2019-03-11 10:47:31
passengers 1
distance 0.49
fare 7.5
tip 2.16
tolls 0
total 12.96
color yellow
payment credit card
pickup_zone Times Sq/Theatre District
dropoff_zone Midtown East
pickup_borough Manhattan
dropoff_borough Manhattan
Name: 5, dtype: object

Let’s see how we can store the numerical values for a given data point (row) in a vector. The idea
is just to use an array and fill it using the methods we have just seen.

Let’s remind ourself of the first few rows and store the six numerical column values (features) of
the third row in a vector.

We’ll need to import numpy if we haven’t already.

[22]: dft.head(3)

[22]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0 2.15
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0 0.00
2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5 2.36

tolls total color payment pickup_zone \
0 0.0 12.95 yellow credit card Lenox Hill West

16

1 0.0 9.30 yellow cash Upper West Side South
2 0.0 14.16 yellow credit card Alphabet City

dropoff_zone pickup_borough dropoff_borough
0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan

[23]: import numpy as np
r3 = np.array([dft.iat[2,2],dft.iat[2,3],dft.iat[2,4],dft.iat[2,5],dft.
↪→iat[2,6],dft.iat[2,7]])

print(r3)

[1. 1.37 7.5 2.36 0. 14.16]

Too much typing? Here is a faster way…

dft.iloc[2,2:8] refers to the third row (indexed with 2), and columns 3 to 8 (indexed as 2 to 7).

[24]: r3 = np.array(dft.iloc[2,2:8])
print(r3)

[1 1.37 7.5 2.36 0.0 14.16]

In dft.iloc[2,2:8] the first 2 refers to the third row. The slice 2:8 uses the starting value 2
to refer to the third column, and the colon : means continue on from 2 in steps of 1 to get the
sequence 2 3 4 \ldots. The 8 tells the sequence to stop at 7.

If you are confused and annoyed that 2:8 gives 2 3 4 5 6 7 and not 2 3 4 5 6 7 8 then, rest
assured, you are not alone.

1.13 Review
We have just come a long way:

• we reviewed the mathematical notion of a vector.
• we saw how using numpy in python we could

– create vectors;
– add and subtract them, and multiply by a scalar;
– compute various vector norms and phoney norms.

Furthermore

• we saw how to access the toy datasets in seaborn.
• how to work with pandas data frames.
• how to extract data frame values.
• how to represent a data point as a vector of features.

We will be building extensively on these skills in the coming weeks.

Taking raw data and manipulating it so that it is in a form suitable for analysis is often referred to
as Data Wrangling. The pandas cheat sheet here https://pandas.pydata.org/Pandas_Cheat_

17

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Sheet.pdf gives lots of examples of how to work with data frames.

For now we finish off with a look at a few more of the toy datasets that seaborn provides. They
are called toy because they are realistic enough to use when learning techniques and tools in data
science, but also small enough to get answers in real time.

1.13.1 The tips data set

Let’s look again now at the tips data set.

We will load the data using the variable name dftp, for data frame tips.

Note that we could use dft, the same name as above, but that would overwrite the previous
‘value/meaning’ of dft. This may or may not be what you want.

[25]: dftp = sns.load_dataset('tips')
dftp.head()

[25]: total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

An extensive list of data frame methods/functions can be found here: https://pandas.pydata.
org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame - we
have seen some of them. Let’s look at some more…

This will give us basic information on the data set.

[26]: print(dftp.info)

<bound method DataFrame.info of total_bill tip sex smoker day
time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
.. … … … … … … …
239 29.03 5.92 Male No Sat Dinner 3
240 27.18 2.00 Female Yes Sat Dinner 2
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2

[244 rows x 7 columns]>

A quick glance tell us that there are 7 columns of features, and 244 data points.

We can these numbers with shape, and size tells us how many distinct values are stored.

18

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

[27]: print('The shape of the data frame is: ', dftp.shape)
print('The size of the data frame is: ', dftp.size)
print('Note that 244*7 =', 244*7)

The shape of the data frame is: (244, 7)
The size of the data frame is: 1708
Note that 244*7 = 1708

One way to get a quick overview of the data is to plot the numerical values.

[28]: dftp.plot()

[28]: <AxesSubplot:>

We can get summary statistics like this:

[29]: dftp.describe()

[29]: total_bill tip size
count 244.000000 244.000000 244.000000
mean 19.785943 2.998279 2.569672
std 8.902412 1.383638 0.951100
min 3.070000 1.000000 1.000000
25% 13.347500 2.000000 2.000000
50% 17.795000 2.900000 2.000000
75% 24.127500 3.562500 3.000000
max 50.810000 10.000000 6.000000

19

And we can get more detailed quantile information like this

[30]: dftp.quantile(0.95)

[30]: total_bill 38.0610
tip 5.1955
size 4.0000
Name: 0.95, dtype: float64

We can also produce scatter plots

[31]: sns.scatterplot(data=dftp, x="total_bill", y="tip")

[31]: <AxesSubplot:xlabel='total_bill', ylabel='tip'>

1.14 Exercises
For the Anscombe data set:

1. Which of the summary statistics for x are the same or similar for each subset?
2. Which of the summary statistics for y are the same or similar for each subset?

Look at the diamonds data set

1. How many diamonds are listed there? How many attributes does each have?
2. Scatter plot price against carat.

20

1: ds = sns.load_dataset('diamonds'); ds.shape: 53940 and 10
2: sns.scatterplot(data=ds, x="carat", y="price")

1.15 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides 2_vectors.ipynb
• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

1.16 Get Notebook Name
This came from https://stackoverflow.com/questions/12544056/
how-do-i-get-the-current-ipython-jupyter-notebook-name on 17 Nov 2022.

This is a largely failed attempt to get the notebook name automatically inserted into the bash
archiving commands below.

These few cells cannot be merged.

IPython.notebook.kernel.execute(‘nb_name = ”’ + IPython.notebook.notebook_name + ‘”’)

[32]: #print(nb_name)
give the above time to work, otherwise an error is thrown below.
#import time
#time.sleep(5)

import os nb_full_path = os.path.join(os.getcwd(), nb_name)

print(nb_name) nb_root_name, _ = nb_name.split(“.”) print(nb_root_name)

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

21

https://stackoverflow.com/questions/12544056/how-do-i-get-the-current-ipython-jupyter-notebook-name
https://stackoverflow.com/questions/12544056/how-do-i-get-the-current-ipython-jupyter-notebook-name
https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

[33]: %%bash
NBROOTNAME='2_vectors'
OUTPUTTING=1

if [$OUTPUTTING -eq 1]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

Not Generating html, pdf and py output versions

Ignore this - it was done earlier

For the taxis data set:

1. Produce a scatterplot of “dropoff_borough” vs. “tip”
2. Plot the dependence of fare on distance.

1: sns.scatterplot(data=ds, x="dropoff_borough", y="tip")
2: sns.scatterplot(data=ds, x="distance", y="tip")

For the tips data set:

1. What is the standard deviation of the tips?
2. Plot the scatter of tip against the total bill
3. Plot the scatter of total bill against day
4. Plot the scatter of tip against gender

1: ds.describe()
2: sns.scatterplot(data=ds, x="total_bill", y="tip")
3: sns.scatterplot(data=ds, x="day", y="total_bill")
4: sns.scatterplot(data=ds, x="sex", y="tip")

[]:

22

	Vectors
	What this is about:
	Assigned Reading
	Vectors
	python: Binder, Anaconda and Jupyter
	Using numpy to represent vectors
	Using numpy for transpose.
	Addition and Subtraction
	Vector - scalar multiplication
	Using numpy for vector calculations
	Vector Norms
	The Vector 2-norm (\ell_2, or Euclidean, or Pythagorean, distance)
	The Vector p-norm (\ell_p, or Minkowski, norms)
	The Vector 1-norm (\ell_1, Manhattan, or taxicab, distance)
	The Vector \infty-norm (\ell_\infty, `max', or Chebychev, norm)

	Some data - data as vectors
	The taxis data set

	Data as Vectors
	Review
	The tips data set

	Exercises
	Technical Notes, Production and Archiving
	Get Notebook Name

