
4_concepts

January 31, 2024

1 Concepts
variationalform https://variationalform.github.io/

Just Enough: progress at pace https://variationalform.github.io/

https://github.com/variationalform

https://www.brunel.ac.uk/people/simon-shaw.

This work is licensed under CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International)

Visit http://creativecommons.org/licenses/by-sa/4.0/ to see the terms.

This document uses python

and also makes use of LaTeX

in Markdown

2 Penguins: Exploring Some Key Concepts
We’ll be using the penguins data that we have seen before in order to introduce, understand and
work with these concepts:

• Binary Classifiers, Confusion Matrices, Decision Boundaries
• True and False Postives and Negatives
• sensitivity, specificity, precision, recall, F1 score, prevalence,

These terms and their usage will be coming back again and again.

We will also discuss the fairness dilemma, using Sumpter (2021) as a source:

• Sumpter (2021) Ethics in Machine Learning, In: Machine Learning: A First Course for
Engineers and Scientists, Cambridge University Press

This is no more than Chapter 12 of our reference book [MLFCES] as introduced in an earlier
session:

• MLFCES: Machine Learning: A First Course for Engineers and Scientists, by Andreas Lind-
holm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön. Cambridge University Press.
http://smlbook.org
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[1]: # First we bring in our standard imports...
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
import pandas as pd
import seaborn as sns
import time

… plus the newer ones we learned about last time.

[2]: from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix,␣
↪→accuracy_score

2.1 Back to where we were
We’ll bring in the penguins data set and clean it up just as in the previous session. We do this bit
quickly because there is nothing new here.

NOTE: we wont always be going through such detailed coding. The purpose of these
introductory sessions is to set you up with code templates that you can take and adjust
to suit your needs. Once you have those we will be able to spend more time looking at
the machine learning models themselves.

[3]: dfp = sns.load_dataset('penguins')
dfp2 = dfp.dropna()
dfp2.isna().sum()
dfp2 = dfp2.reset_index(drop=True)

[4]: dfp.head()

[4]: species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen NaN NaN NaN
4 Adelie Torgersen 36.7 19.3 193.0

body_mass_g sex
0 3750.0 Male
1 3800.0 Female
2 3250.0 Female
3 NaN NaN
4 3450.0 Female

[5]: dfp2.head()
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[5]: species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen 36.7 19.3 193.0
4 Adelie Torgersen 39.3 20.6 190.0

body_mass_g sex
0 3750.0 Male
1 3800.0 Female
2 3250.0 Female
3 3450.0 Female
4 3650.0 Male

We have already seen how we can use k-NN to predict the species in column zero, from the numerical
data in columns 3 - 6 (indexed as 2 - 5).

Here is that code again…

We fitted the model using the Manhattan metric: ∥x∗−xi∥1, and then plotted the confusion matrix
and performance data.

[6]: # create our labelled training and test data sets with 60/40 train/test split
X = dfp2.iloc[:, 2:6].values
y = dfp2.iloc[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)

[7]: # scale the data
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

[8]: # obtain the classifier and fit it using 2 nearest neighbours
# and the Manhattan norm
classifier = KNeighborsClassifier(n_neighbors=2, p=1)
classifier.fit(X_train, y_train)

[8]: KNeighborsClassifier(n_neighbors=2, p=1)

[9]: # Now use the fitted model from the training data to predict
# from the test data.
y_pred = classifier.predict(X_test)

[10]: # create a confusion matrix to assess the performance

cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
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print(cm)

clsrep = classification_report(y_test, y_pred)
print("Classification Report:",)
print(clsrep)

accsc = accuracy_score(y_test,y_pred)
print("Accuracy:", accsc)

Confusion Matrix:
[[61 0 0]
[ 1 28 0]
[ 0 0 44]]
Classification Report:

precision recall f1-score support

Adelie 0.98 1.00 0.99 61
Chinstrap 1.00 0.97 0.98 29

Gentoo 1.00 1.00 1.00 44

accuracy 0.99 134
macro avg 0.99 0.99 0.99 134

weighted avg 0.99 0.99 0.99 134

Accuracy: 0.9925373134328358

2.1.1 The Confusion Matrix

The confusion matrix is square with the same number of rows/columns as there are values for the
label. In our case there are three possible label values: Adelie, Chinstrap, and Gentoo. We can
refer to these as group 1, 2 and 3.

The entry in row i and column j of the confusion matrix tells us how many data points in X_test
that were in group i were predicted by the model to be in group j. For details see

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_
matrix.html

Now, the representation of the confusion matrix above is a numpy array and although it is useful
for coding, it isn’t very user friendly. The following code gives us something much nicer, and it is
much easier to understand.

[11]: from sklearn.metrics import ConfusionMatrixDisplay
cmplot = ConfusionMatrixDisplay(cm, display_labels=classifier.classes_)
cmplot.plot()
plt.show()
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We can now immediately get a feeling for how good the model is. The diagonal elements tell us how
many species predictions match the true value. The off-diagonals tell us how many misses there
are, and how they missed.

For example, the number in the middle of the top row tells us how many Adelie penguins were
mistakenly predicted to be Chinstraps.

Also, the overall accuracy percentage can be determined by adding all the numbers in the matrix,
calling the total B, and adding all the diagonal elements together, as A. The value of A/B then
tells us the proportion of correct predictions - and that is the Accuracy score above.

We haven’t yet properly reviewed the mathematical concept and notion of a matrix yet, although
we will do soon. We will be coming back to confusion matrices over and over again though.

The confusion matrix can be large or small. A particularly important case is the 2× 2 case.

2.2 Binary Classifier
What we are doing above is classifying: given data from a specific observation we are deciding
what class that observation belongs to.

In the case above we are attempting to use physiological data to classify the species of penguin.

A particularly important type of classifier arises when we are simply trying to decide ‘Yes’ or ‘No’,
or ‘True’ or ‘False’, ‘Guilty’ or ‘Innocent’, ‘Diseased’ or ‘Healthy’ and so on.

There are only two classes: generically termed positive and negative.
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Such a classifier is called a Binary Classifier, and the confusion matrix bears further discussion
in this case.

Let’s return to the penguin data and try to predict gender from the other physiological charac-
teristics. This will be a binary classifier, because it will either predict ‘Female’ (positive) or
‘Not-Female’ (negative).

Let’s start by recalling the structure of the data frame.

[12]: dfp2.head()

[12]: species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen 36.7 19.3 193.0
4 Adelie Torgersen 39.3 20.6 190.0

body_mass_g sex
0 3750.0 Male
1 3800.0 Female
2 3250.0 Female
3 3450.0 Female
4 3650.0 Male

We can double check that ‘Female’ and ‘Male’ are the only entries in the gender column like this:

[13]: dfp2['sex'].unique()

[13]: array(['Male', 'Female'], dtype=object)

2.2.1 Predicting gender from just two data items

Below we want to introduce the notion of a decision boundary. This is best done graphically
and for that we want to work with 2D plots.

This means that we want our k-NN classifier to be able to predict gender from just two columns
of data.

The question then, is which two columns to choose?

Let’s have a look at the choices available to us. We could try looking at the table…

[14]: dfp2.head()

[14]: species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen 36.7 19.3 193.0
4 Adelie Torgersen 39.3 20.6 190.0
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body_mass_g sex
0 3750.0 Male
1 3800.0 Female
2 3250.0 Female
3 3450.0 Female
4 3650.0 Male

… but how are we ever going to be able to make a good decision as to which pair of columns like
that?

Here is a better way (at least if you don’t have too many columns):

[15]: sns.pairplot(dfp2, corner=True, hue='sex', height=1.7)

[15]: <seaborn.axisgrid.PairGrid at 0x7fc400b7c940>

It looks from this that bill depth and body mass should work well to separate out genders.
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Even here, the term Decision Boundary might make some intuitive sense to you. What do you
think it might mean?

Let’s build the binary classifier using just these two columns, and get the confusion matrix just as
before.

We’ll do it all in one go, because we’ve seen all the steps before…

[16]: # extract the input/features X, and the output/labels y
X = dfp2.iloc[:, [3,5]].values
y = dfp2.iloc[:, 6].values
# optionally, print the first few just to check
print(X[0:4,:])
print(y[0:4])
# bifurcate the data to get a 40% test set, and 60% training set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)

# print out the sizes of the train and test sets
print('\n')
print('X_train has ', X_train.shape[0], ' rows and ', X_train.shape[1], '␣
↪→columns')

print('y_train has ', y_train.shape[0], ' rows')
print('\n')
print('X_test has ', X_test.shape[0], ' rows and ', X_test.shape[1], ' columns')
print('y_test has ', y_test.shape[0], ' rows')
print('\n')

# get scaling parameters from the training data,
scaler = StandardScaler()
scaler.fit(X_train)
# scale the training data
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

# now classify using k=2, p=1 - as before
classifier = KNeighborsClassifier(n_neighbors=2, p=1)
classifier.fit(X_train, y_train)
# and then make predictions from the test data
y_pred = classifier.predict(X_test)

# compare the predictions with the ground truth, or hold-out set, y_test
cm = confusion_matrix(y_test, y_pred)

# and print the results out
print("Confusion Matrix:")
print(cm)
clsrep = classification_report(y_test, y_pred)
print('\n')
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print("Classification Report:",)
print(clsrep)
accsc = accuracy_score(y_test,y_pred)
print('\n')
print("Accuracy:", accsc)

[[ 18.7 3750. ]
[ 17.4 3800. ]
[ 18. 3250. ]
[ 19.3 3450. ]]
['Male' 'Female' 'Female' 'Female']

X_train has 199 rows and 2 columns
y_train has 199 rows

X_test has 134 rows and 2 columns
y_test has 134 rows

Confusion Matrix:
[[65 5]
[16 48]]

Classification Report:
precision recall f1-score support

Female 0.80 0.93 0.86 70
Male 0.91 0.75 0.82 64

accuracy 0.84 134
macro avg 0.85 0.84 0.84 134

weighted avg 0.85 0.84 0.84 134

Accuracy: 0.8432835820895522

We have seen before that there is another way to display the confusion matrix that is friendlier on
the eye. We’ll do this below.

Alos, we note from above that there are 134 data points in the test set and so we should expect
the numbers in the confusion matrix to sum to that number. It’s a useful check…

[17]: print(cm.sum())

134
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[18]: cmplot = ConfusionMatrixDisplay(cm, display_labels=classifier.classes_)
cmplot.plot()
plt.show()

2.3 True and False Positives and Negatives
There are a few particularly important pieces of terminology that are associated with binary clas-
sifiers.

• TP, True Positives: This is the number of test data points that are labelled POSITIVE for
which the classifier correctly (truly) predicted them as POSITIVE.

• FP, False Positives: This is the number of test data points that are labelled NEGATIVE
for which the classifier incorrectly (falsely) predicted them as POSITIVE.

Since we are regarding Female as POSITIVE, we can see these numbers in the first column
above.

Furthermore,

• FN, False Negatives. This is the number of test data points that are labelled POSITIVE
for which the classifier incorrectly (falsely) predicted them as NEGATIVE.

• TN, True Negatives. This is the number of test data points that are labelled NEGATIVE
for which the classifier incorrectly (truly) predicted them as NEGATIVE.

These last two are in the second column.

Diagrammatically we have
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target, or true
label/class

+
−

(
TP FN
FP TN

)
+ −

output, or predicted
label/class

We can access these numbers in code as follows:

[19]: TP = cm[0,0]; FP = cm[1,0]; FN = cm[0,1]; TN = cm[1,1]
print(TP, FN)
print(FP, TN)

65 5
16 48

3 Related Formulae and Measures
Once we have these data we can compute a wide variety of different performance indicators. Here
are the most commonly used, where we use P and N for the number of positives and negatives
overall in the test set.

• Prevalence:

Prevalance =
P

P + N
• TPR: True Positive Rate, sensitivity, recall:

TPR =
TP
P =

TP
TP + FN

• TNR: True Negative Rate, specificity, selectivity:

TNR =
TN
N =

TN
TN + FP

• FPR: False Positive Rate:

FPR =
FP
N =

FP
FP + TN

• FNR: False Negative Rate:

FNR =
FN
P =

FN
FN + TP

• Accuracy:

Accuracy =
TP + TN

P + N
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• Balanced Accuracy:

Balanced Accuracy =
1

2
(TPR + TNR)

• PPV: Positive Predictive Value, precision:

PPV =
TP

TP + FP
• NPV: Negative Predictive Value:

NPV =
TN

TN + FN
• F1 score: this is the harmonic mean of precision and sensitivity:

F1 =


(

TP
TP + FP

)−1

+

(
TP

TP + FN

)−1

2


−1

=
2TP

2TP + FP + FN

Let’s calculate some of these

[20]: P=TP+FN
N=FP+TN
print('P (# positives) = ', P)
print('N (# negatives) = ', N)
print('TPR (recall) = ', TP/(TP+FN))
print('PPV (precision) = ', TP/(TP+FP))
print('F1 = ', 2*TP/(2*TP+FP+FN))
print('Accuracy = ', (TP+TN)/(P+N))

P (# positives) = 70
N (# negatives) = 64
TPR (recall) = 0.9285714285714286
PPV (precision) = 0.8024691358024691
F1 = 0.8609271523178808
Accuracy = 0.8432835820895522

But - remember this?

[21]: print("Classification Report:",)
print(clsrep)
accsc = accuracy_score(y_test,y_pred)
print("Accuracy:", accsc)

Classification Report:
precision recall f1-score support
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Female 0.80 0.93 0.86 70
Male 0.91 0.75 0.82 64

accuracy 0.84 134
macro avg 0.85 0.84 0.84 134

weighted avg 0.85 0.84 0.84 134

Accuracy: 0.8432835820895522

With Females as Positive we can read off the precision, recall and F1 score from the table, and
obtain the accuracy as a by-product of the classification as well.

Also, support tells us what P is.

3.0.1 Decision Boundaries

Let’s now try and develop a bit more intuition as to how this classifier works, and what we can
expect from it.

The following observation will be relevant to other classification techniques as well.

Let’s recap:

• we have a training data set of features.
• these features are points in space.
• each training point has a label - its class
• we introduce a new point: it will have some ‘nearest neighbours’
• we use the nearest neighbours’ classes to classify the new point

Imagine this for a binary classifier where the the data points, the features, are points in 2D.

We can imagine that the binary output can be coloured. For example:

RED for POSITIVE (i.e. female)

BLUE for NEGATIVE (i.e. male)

We can already see something like this from the scatter plots.

[22]: sns.scatterplot(data=dfp2, x="bill_depth_mm", y="body_mass_g", hue="sex")

[22]: <AxesSubplot:xlabel='bill_depth_mm', ylabel='body_mass_g'>
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From this diagram we can imagine drawing a line that attempts to separate the RED and BLUE
regions. Such a line is called a Decision Boundary.

On one side of the boundary we decide POSITIVE, and on the other we decide NEGATIVE.

We’re not going to actually get a pen and draw this line though.

We’re going to illustrate the decision boundary with code.

4 Plotting the decision boundary
We are going to do this at a low level using matplotlib. First let’s look closely at our predictions.

[23]: print(y_pred)

['Female' 'Female' 'Female' 'Male' 'Male' 'Female' 'Female' 'Female'
'Female' 'Male' 'Female' 'Male' 'Female' 'Male' 'Female' 'Female'
'Female' 'Male' 'Male' 'Female' 'Female' 'Male' 'Male' 'Male' 'Male'
'Female' 'Female' 'Female' 'Male' 'Female' 'Male' 'Male' 'Male' 'Female'
'Male' 'Male' 'Female' 'Female' 'Female' 'Female' 'Male' 'Female'
'Female' 'Female' 'Female' 'Female' 'Female' 'Female' 'Male' 'Male'
'Female' 'Male' 'Female' 'Male' 'Female' 'Female' 'Male' 'Male' 'Male'
'Female' 'Female' 'Male' 'Male' 'Female' 'Female' 'Female' 'Male' 'Male'
'Female' 'Female' 'Female' 'Female' 'Female' 'Male' 'Male' 'Male'
'Female' 'Female' 'Female' 'Male' 'Female' 'Female' 'Female' 'Male'
'Female' 'Female' 'Female' 'Female' 'Female' 'Male' 'Male' 'Female'
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'Male' 'Female' 'Female' 'Female' 'Male' 'Female' 'Female' 'Female'
'Male' 'Male' 'Male' 'Male' 'Female' 'Female' 'Male' 'Male' 'Female'
'Male' 'Female' 'Male' 'Female' 'Female' 'Female' 'Male' 'Female' 'Male'
'Female' 'Male' 'Male' 'Female' 'Male' 'Male' 'Male' 'Female' 'Female'
'Female' 'Female' 'Female' 'Female' 'Female' 'Female' 'Female']

We’re going to find all the array indices for POSITIVE (Female) predictions and all the indices
for NEGATIVE (Male) predictions.

We can print them out to see what is going on, but we don’t have to…

[24]: indxM = np.where(y_pred == 'Male')[0]
indxF = np.where(y_pred != 'Male')[0]
print(indxM, len(indxM))
print(indxF, len(indxF))

[ 3 4 9 11 13 17 18 21 22 23 24 28 30 31 32 34 35 40
48 49 51 53 56 57 58 61 62 66 67 73 74 75 79 83 89 90
92 96 100 101 102 103 106 107 109 111 115 117 119 120 122 123 124] 53

[ 0 1 2 5 6 7 8 10 12 14 15 16 19 20 25 26 27 29
33 36 37 38 39 41 42 43 44 45 46 47 50 52 54 55 59 60
63 64 65 68 69 70 71 72 76 77 78 80 81 82 84 85 86 87
88 91 93 94 95 97 98 99 104 105 108 110 112 113 114 116 118 121

125 126 127 128 129 130 131 132 133] 81

We can visualize these predictions with a scatter plot like this:

[25]: plt.scatter(X_test[indxM,0], X_test[indxM,1], color='blue')
plt.scatter(X_test[indxF,0], X_test[indxF,1], color='red')

[25]: <matplotlib.collections.PathCollection at 0x7fc400cf0f98>

15



And we can recall the ground truth in the whole data set like this:

[26]: sns.scatterplot(data=dfp2, x="bill_depth_mm", y="body_mass_g", hue="sex")
print(dfp2.shape, 0.4*dfp2.shape[0])

(333, 7) 133.20000000000002
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They aren’t the same. They shouldn’t be. This is because:

• The number of predictions is less than the number of data points because of the train-test
split.

• Also, the predictions may not be correct, so points at the same location in 2D may have
different colours.

We can easily check the first of these above by looking at the shape of the arrays like this…

[27]: print(y_pred.shape)
print(X_test.shape)
print(X_test[indxM,:].shape)
print(X_test[indxF,:].shape)
print(X_test[indxM,:].shape[0] + X_test[indxF,:].shape[0])

(134,)
(134, 2)
(53, 2)
(81, 2)
134

However, these scatter plots don’t really give us the separating line that we have been discussing -
the Decision Boundary.

That is going to take a bit more work.

The idea is to decide on a range of values for the features in X_test and then to create a regular
grid.

We then predict the label on that regular grid and color the point accordingly.

It is a bit involved, but here we go… The code was adapted from that found here:

https://hackernoon.com/how-to-plot-a-decision-boundary-for-machine-learning-algorithms-in-python-3o1n3w07

[28]: # define bounds of the domain using max and min of our features
x1min, x1max = X_test[:, 0].min()-1, X_test[:, 0].max()+1
x2min, x2max = X_test[:, 1].min()-1, X_test[:, 1].max()+1

# define the x and y scale - this sets up a point spacing of 0.1
x1grid = np.arange(x1min, x1max, 0.1)
x2grid = np.arange(x2min, x2max, 0.1)

# create arrays for the grid coordinates
xx1, xx2 = np.meshgrid(x1grid, x2grid)
print('xx1.shape = ', xx1.shape)
print('xx2.shape = ', xx2.shape)
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xx1.shape = (66, 58)
xx2.shape = (66, 58)

[29]: # original efforts - can be deleted.
#xx1xx2 = np.hstack((xx1.reshape((len(xx1),1)),xx2.reshape((len(xx2),1))))
#xx1xx2 = np.vstack((xx1.flatten(), xx2.flatten()))
#print(xx1xx2)

This is fine for plotting, but the prediction model needs just a list of pairs of features. So we have
to flatten these grids

[30]: xx1xx2 = np.stack((xx1.flatten(), xx2.flatten()), axis=-1)
print(xx1xx2.shape)

(3828, 2)

Now we can predict the label at each of the grid points.

NOTE: X_test has already been normalized.

[31]: y_pred = classifier.predict(xx1xx2)

And then scatter plot these in different colours according to prediction.

[32]: indxF = np.where(y_pred == 'Female')[0]
indxM = np.where(y_pred != 'Female')[0]
plt.scatter(xx1xx2[indxM,0], xx1xx2[indxM,1], color='blue' , s=2)
plt.scatter(xx1xx2[indxF,0], xx1xx2[indxF,1], color='red', s=2)

[32]: <matplotlib.collections.PathCollection at 0x7fc3f09fcbe0>
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[33]: # the ground truth of the entire data set we have seen earlier, it's this:
sns.scatterplot(data=dfp2, x="bill_depth_mm", y="body_mass_g", hue="sex")
print(dfp2.shape, 0.4*dfp2.shape[0])

(333, 7) 133.20000000000002

It would be nice to overlay these onto the decision boundary diagram.

Well, first we plot these in matplotlib like so:

[34]: indxM = np.where(y == 'Male')[0]
indxF = np.where(y != 'Male')[0]
plt.scatter(X[indxM,0], X[indxM,1], color='blue')
plt.scatter(X[indxF,0], X[indxF,1], color='red')

[34]: <matplotlib.collections.PathCollection at 0x7fc3f0832dd8>

19



It is now just a case of repeating the decision boundary plot from earlier, and then following up
with the one above.

We have to do this in the same cell in order that they appear on the same set of axes.

Remember also that the ground truth in X and y needs to be scaled. We do this by creating
X_trans.

[35]: # repeat the plot from above
indxF = np.where(y_pred == 'Female')[0]
indxM = np.where(y_pred != 'Female')[0]
plt.scatter(xx1xx2[indxM,0], xx1xx2[indxM,1], color='blue' , s=2)
plt.scatter(xx1xx2[indxF,0], xx1xx2[indxF,1], color='red', s=2)

# scale the ground truth
X_trans = scaler.transform(X)

# now plot the ground truth using 'empty' circles
indxM = np.where(y == 'Male')[0]
indxF = np.where(y != 'Male')[0]
plt.scatter(X_trans[indxM,0], X_trans[indxM,1], facecolors='w', edgecolors='b')
plt.scatter(X_trans[indxF,0], X_trans[indxF,1], facecolors='w', edgecolors='r')

[35]: <matplotlib.collections.PathCollection at 0x7fc3f0b62a58>
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We’ll come back to decision boundaries several times later on. It is worth noting that we did
everything here in 2D because these cases are easy to plot and illustrate.

If we had more than two features then we would need to plot the features in higher dimensional
space - which is quite a challenge.

Nonetheless, a decision boundary can still be imagined that, for a binary classifier, will separate
these points into two disjoint regions.

4.0.1 Fairness - setting up the discussion

The last thing we are going to touch on here is the notion of fairness of a binary classifier.

• what do we mean by this?
• can a binary classifier ever be fair?

As mentioned above, we’ll be using Sumpter (2021) as a source:

• Sumpter (2021) Ethics in Machine Learning, In: Machine Learning: A First Course for
Engineers and Scientists, Cambridge University Press

This is in Chapter 12 of our reference book [MLFCES]:

• MLFCES: Machine Learning: A First Course for Engineers and Scientists, by Andreas Lind-
holm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön. Cambridge University Press.
http://smlbook.org

Consider a binary classifier applied to a population containing p POSITIVE (or true) outcomes
and n NEGATIVE (or false) outcomes. We have seen that the confusion matrix takes this form:
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target
or true

+
−

(
TP FN
FP TN

)
+ −

predicted

If there are t TP’s and f FP’s then:

+
−

(
TP FN
FP TN

)
+ −

becomes
(

t p− t
f n− f

)
.

Suppose now that this classifier is applied to data harvested from two distinct populations. It could
be that the classifier is making a decision as to whether …

• a certain age range of people in various demographic groups are inclined to crime
• individuals in various ethnic groups are entitled to healthcare
• children in different regions should get extra academic help
• how males and female respond to a certain treatment

The question we want to consider is whether or not this classifier can treat each group fairly.

Sumpter in [MLFCES] discusses it this way. We suppose that the classifier is applied to two separate
groups, giving these two confusion matrices:

(
t1 p1 − t1
f1 n1 − f1

)
and

(
t2 p2 − t2
f2 n2 − f2

)
.

We note that

• n1, p1, n2, p2 are beyond our control - they are simply ‘facts’
• f1, t1 and f2, t2 are a property of the model and how well it works.

4.0.2 Remarks

Following Sumpter’s ideas we now ask if this classifier can be fair. Can we be sure that it performs
the same on two different groups?

To make progress on this question note that in this scenario pi and ni are beyond our control for
each group (i = 1 and i = 2) - they are just facts.

Moreover, the fi and ti in each case are determined by the classification method chosen, and the
configuration of the algorithm (the selection of hyperparameters for example). We have some
control over these by our training procedure, but we cannot guarantee perfection.

4.0.3 Fairness

We can attempt to tune the classifier by insisting that it performs equally on both groups. Sumpter
does this by…

• Asking that the FPR’s are equal:
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f1
n1

=
f2
n2

=⇒ f1 =
f2n1

n2
.

• Asking that the TPR’s are equal:

t1
p1

=
t2
p2

=⇒ t1 =
t2p1
p2

.

• Asking for equal precision:

t1
t1 + f1

=
t2

t2 + f2
=⇒

t2p1
p2

t2p1
p2

+
f2n1

n2

=
t2

t2 + f2

The last of these used the first two and, when simplified, implies that

t2
t2 + f2

=
t2

t2 + f2
n1

n2

p2
p1

=⇒ f1, f2 = 0 or p1
n1

=
p2
n2

Implication Fairness, in the sense described above, is probably not possible in general. If the
three measures above are to be indifferent to the two groups then:

• Either: the classifier is a perfect predictor for positive results in the sense that each fi, the
numbers of FP’s, is zero.

• Or: the ratios of positives to negatives are equal in each group.

Both of these are unlikely.

Closing Thoughts You are referred to Sumpter’s article for more details where, in particular,
we hear that solving this fairness dilemma is not a technical matter but rather one of ethics.

Data Science is more than just computation. It is important to be aware of the wider contexct in
which we operate, as well as the limitations of our models and methods.

What do you think?

4.1 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides 4_concepts.ipynb
• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
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• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook.

[36]: %%bash
NBROOTNAME='4_concepts'
OUTPUTTING=1

if [ $OUTPUTTING -eq 1 ]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

Not Generating html, pdf and py output versions
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