
5_matrices

January 31, 2024

1 Matrices
variationalform https://variationalform.github.io/

Just Enough: progress at pace https://variationalform.github.io/

https://github.com/variationalform

Simon Shaw https://www.brunel.ac.uk/people/simon-shaw.

This work is licensed under CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International)

Visit http://creativecommons.org/licenses/by-sa/4.0/ to see the terms.

This document uses python

and also makes use of LaTeX

in Markdown

1.1 What this is about:
You will be introduced to …

• The inner product (or dot product, or scalar product) of vectors
• Matrices as a way to represent tables of numbers.
• Matrices as a way to operate on vectors (and other matrices)
• The arithmetic (adding and subtracting) of matrices.
• The numpy library (or package) for working with matrices in python

We’ll then look at special types of matrices, and derived quantities.

As usual our emphasis will be on doing rather than proving: just enough: progress at pace

1.2 Assigned Reading
For this worksheet you should read Chapters 6 and 7 of [VMLS] for more introductory material on
matrices, and also Appendix D of [DSML] if you want to read more about python and numpy.

• VMLS: Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares, by
Stephen Boyd and Lieven Vandenberghe, https://web.stanford.edu/~boyd/vmls/

• DSML: Data Science and Machine Learning, Mathematical and Statistical Methods by Dirk
P. Kroese, Zdravko I. Botev, Thomas Taimre, Radislav Vaisman, https://people.smp.uq.

1

https://variationalform.github.io/
https://variationalform.github.io/
https://github.com/variationalform
https://www.brunel.ac.uk/people/simon-shaw
https://web.stanford.edu/~boyd/vmls/
https://people.smp.uq.edu.au/DirkKroese/DSML
https://people.smp.uq.edu.au/DirkKroese/DSML

edu.au/DirkKroese/DSML and https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.
pdf

Further accessible material can be found in [FCLA], and advanced material is available in Chapters
2, 3 and 4 of [MML].

• MML: Mathematics for Machine Learning, by Marc Peter Deisenroth, A. Aldo Faisal, and
Cheng Soon Ong. Cambridge University Press. https://mml-book.github.io.

• FCLA: A First Course in Linear Algebra, by Ken Kuttler, https://math.libretexts.org/
Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)

All of the above can be accessed legally and without cost.

There are also these useful references for coding:

• PT: python: https://docs.python.org/3/tutorial
• NP: numpy: https://numpy.org/doc/stable/user/quickstart.html
• MPL: matplotlib: https://matplotlib.org

1.3 Matrices
A matrix is an n-row by m-column table of numbers enclosed in brackets. For example,

B =

(
3 1 −6.2
2 −5 π

)
, N =

 −4 9
7/8 6
0 0

 , Z =

 1 2 0
1 −2 1
0 1 −4

 ,

are, in turn, a 2 by 3, a 3 by 2 and a 3 by 3 matrix. These are called the matrix shape, or dimension.

We will deal exclusively with matrices of real numbers from R.

Complex matrices with entries from C can be introduced but we wont need them.

B =

(
3 1 −6.2
2 −5 π

)
, N =

 −4 9
7/8 6
0 0

 , Z =

 1 2 0
1 −2 1
0 1 −4

 ,

Matrices are usually denoted by bold CAPITAL letters, and when n = m we call the matrix square.
For a square n× n matrix we will just use n as its dimension. So Z is square of dimension 3.

If we exchange the rows and columns of a matrix we get its transpose, denoted with a superscript
T like so,

BT =

 3 2
1 −5

−6.2 π

 , NT =

(
−4 7

8 0
9 6 0

)
, ZT =

 1 1 0
2 −2 1
0 1 −4

 .

1.4 Using numpy to represent matrices
As we have seen, numpy is a key tool for scientific computing in python. See https://numpy.org

As before, we load in the numpy package and abbreviate it with np.

2

https://people.smp.uq.edu.au/DirkKroese/DSML
https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf
https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf
https://mml-book.github.io
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)
https://docs.python.org/3/tutorial
https://numpy.org/doc/stable/user/quickstart.html
https://matplotlib.org
https://numpy.org

[1]: import numpy as np

Now we can set up the matrices above as numpy arrays, and print them out, as follows,

[2]: B = np.array([[3,1, -6.2], [2,-5,np.pi]])
N = np.array([[-4, 9],[7/8, 6],[0, 0]])
Z = np.array([[1,2, 0],[1, -2, 1],[0, 1, -4]])
print('B = \n', B)
print('N = \n', N)
print('Z = \n', Z)

B =
[[3. 1. -6.2]
[2. -5. 3.14159265]]
N =
[[-4. 9.]
[0.875 6.]
[0. 0.]]
Z =
[[1 2 0]
[1 -2 1]
[0 1 -4]]

The matrix transpose just requires .T - like this

[3]: print('B.T = \n', B.T)
print('N.T = \n', N.T)
print('Z.T = \n', Z.T)

B.T =
[[3. 2.]
[1. -5.]
[-6.2 3.14159265]]
N.T =
[[-4. 0.875 0.]
[9. 6. 0.]]
Z.T =
[[1 1 0]
[2 -2 1]
[0 1 -4]]

These agree with what we had earlier,

BT =

 3 2
1 −5

−6.2 π

 , NT =

(
−4 7

8 0
9 6 0

)
, ZT =

 1 1 0
2 −2 1
0 1 −4

 .

3

1.5 Addition and Subtraction
Matrices of the same dimension, or shape, can be added or subtracted as in,

B −NT =

(
3 1 −6.2
2 −5 π

)
−
(

−4 7
8 0

9 6 0

)
=

(
7 1

8 −6.2
−7 −11 π

)
and

Y = Z +ZT =

 1 2 0
1 −2 1
0 1 −4

+

 1 1 0
2 −2 1
0 1 −4

 =

 2 3 0
3 −4 2
0 2 −8

This can be done in numpy exactly as expected…

[4]: print('B-N.T = \n', B-N.T)
Y = Z+Z.T
print('Y = \n', Y)

B-N.T =
[[7. 0.125 -6.2]
[-7. -11. 3.14159265]]
Y =
[[2 3 0]
[3 -4 2]
[0 2 -8]]

1.6 Symmetry
Notice that Y = Y T . This means for example that Y − Y T = 0 - the zero matrix.

[5]: print('Y = \n', Y)
print('Y.T = \n', Y.T)
print('Y-Y.T = \n', Y-Y.T)

Y =
[[2 3 0]
[3 -4 2]
[0 2 -8]]
Y.T =
[[2 3 0]
[3 -4 2]
[0 2 -8]]
Y-Y.T =
[[0 0 0]
[0 0 0]
[0 0 0]]

4

Matrices which have this property are called symmetric - and this alludes to a reflection in the
leading diagonal, that runs from top left to bottom right. We can also see that

Y T = (Z +ZT)T = ZT + (ZT)T = ZT +Z = Y

and so adding a square matrix to its own transpose always produces a symmetric matrix. Some
writers reserve vertically symmetric letters, such as A,H,… for symmetric matrices, and non-
symmetric letters, such as B,K,…, for non-symmetric matrices. We’ll do this when it’s practical.

THINK ABOUT: Must a symmetric matrix be square? Can you add a non-square
matrix to its own transpose? If L = K + P then what is L− P equal to?

1.7 Matrix Multiplication by a Scalar
Matrices can be multiplied by a scalar: we just have to multiply every entry by that scalar. For
example, for the matrix B given above, we could say C = 2B so that,

C = 2B = 2

(
3 1 −6.2
2 −5 π

)
=

(
6 2 −12.4
4 −10 2π

)
.

And, with numpy …

[6]: C = 2*B
print('C = \n', C)

C =
[[6. 2. -12.4]
[4. -10. 6.28318531]]

1.8 The vector dot, scalar or inner product
Before we discuss how to maultiply a matrix by a nmatrix we need to go back to vectors and
introduce the vector dot, scalar or inner product.

Here it is:

if a =

 3
−2
1

 and p =

 5
2

−10

then the inner product is formed like this,

(a,p) = a · p = (3× 5) + (−2× 2) + (1×−10) = 15− 4− 10 = 1.

The pattern is: multiply each pair of components together and add all of the results up. The result
only exists if the two vectors are of the same dimension.

Note that both of the notations (a,p) and a · p are in popular use.

5

We will use both of them. This is called the inner product, the scalar product or the dot
product. We’ll use all of terms interchangably.

The inner, or scalar, or dot, product is going to be very important so let’s look a bit more closely.
If two vectors are the same dimension, u,v ∈ Rn for some positive integer n, then their inner (or
scalar, or dot) product is the real number given by the following pattern,

(u,v) = u · v = uTv =

u1
u2

...
un

T

v1
v2

...
vn

 = (u1 u2 · · · un)

v1
v2

...
vn

 = u1v2 + u2v2 + · · ·+ unvn.

By using the tranpose, we see that we move horizontally along the left hand vector, and vertically
down the right hand one, multiplying as we go, and adding up the results.

THINK ABOUT: is u · v = v · u? What is u · u? How is u · u connected to ∥u∥22?
Write ∥u∥2 in terms of uTu.

If we think of each of two vectors u,v ∈ Rn as arrows pointing out from the origin, then we can
think of the angle between those arrows.

Let this angle be denoted by θ, then it can be shown that

u · v = ∥u∥2 ∥v∥2 cos(θ)

Remember that u · v, uTv and (u,v) all mean the same thing. The last IS NOT a coordinate
pair!

EXERCISE: draw the vectors u = (5, 0)T and v = (2, 2)T emanating from the origin of R2. What
is the angle between them? Verify the formula above.

[7]: u = np.array([5,0])
v = np.array([2,2])
costheta = u.dot(v) / (np.linalg.norm(u)* np.linalg.norm(v))
theta = np.arccos(costheta)
print('The angle theta = ', theta, ' radians')
print('The angle theta = ', 180*theta/np.pi, ' degrees')

The angle theta = 0.7853981633974484 radians
The angle theta = 45.00000000000001 degrees

u · v = ∥u∥2 ∥v∥2 cos(θ)

THINK ABOUT: Recalling that −1 ≤ cos θ ≤ 1, can you see that −∥u∥2 ∥v∥2 ≤
u · v ≤ ∥u∥2 ∥v∥2? Can you conclude that |u · v| ≤ ∥u∥2 ∥v∥2? This result is called the
Cauchy-Schwarz inequality.

6

If two vectors are at right angles to each other then cos θ = 0 and u · v = 0. The vectors are
then said to be orthogonal. If, in addition to being orthogonal the vectors have unit Pythagorean
length, so that ∥u∥2 = ∥v∥2 = 1, then the vectors are said to be orthonormal.

For further and deeper information on vectors you can consult Chapter 4 of the introductory
level text {FCLA}, https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_
Course_in_Linear_Algebra_(Kuttler)/04%3A_R. A more sophisticated mathematical treatment
of the subject can be found in Chapters 2 and 3 of {MML}, https://mml-book.github.io.

We can imagine stacking vectors next to each other side-by-side. Doing this produces tables of
numbers - and they are what we are seeing as matrices.

The dot product is the key to matrix multiplication.

1.9 Matrix Multiplication
Matrices can be multiplied together provided that they are of compatible shape. The process uses
the same pattern as the inner (or scalar, or dot) product of vectors. We go along the rows on the
left and down the columns on the right. For example:

if J =

(
3 4
2 1

)
and L =

(
1 5 −7

−3 −4 0

)
then JL =

(
−9 −1 −21
−1 6 −14

)
To see how this happens, lay the entire calculation out in detail like this,

(
3 4
2 1

)(
1 5 −7

−3 −4 0

)
=

(
−9 −1 −21
−1 6 −14

)
and think about using the inner product for each row on the left of the product, J , and each column
on the right of the product, L.

Your choice of row in J will give the results in that row on the right of the = sign, and your choice
of column in L will give the results in that column on the right of the = sign.

JL =

(
3 4
2 1

)(
1 5 −7

−3 −4 0

)
=

(
−9 −1 −21
−1 6 −14

)
For example, to get the −1 in row 1 and column 2 we see that it comes from the dot product
pattern applied to the row 1 of J and column 2 of L, like so

(
3 4
· ·

)(
· 5 ·
· −4 ·

)
=

(
· (3× 5 + 4×−4) ·
· · ·

)
=

(
· −1 ·
· · ·

)
Here is another way to see it,

(
→ →
· ·

)(
· ↓ ·
· ↓ ·

)
=

(
· × ·
· · ·

)
Notice that we can only form the product JL if the number of columns in J equals the number of
rows in L. If this isn’t the case then we say that JL doesn’t exist.

7

https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/04%3A_R
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/04%3A_R
https://mml-book.github.io

THINK ABOUT: Note that JL might exist when LJ doesn’t. For this reason we
always need to say whether we are pre-multiplying or post-multiplying. Then pre-
multiplying L by J gives JL while post-multiplying gives LJ (if these products exist).

THINK ABOUT: Given a matrix C, can we always form C2 = CC? What about
C3, or C4 and so on? What about if C is square?

THINK ABOUT: Suppose that JL exists. If J has p rows and L has q columns,
then what is the dimension, or shape, of JL?

THINK ABOUT: Given non-square matrices P and Q for which PQ exists. Does
QP exist? Create two such matrices and form (PQ)T and QTP T . What do you find?
Do you think this is always true?

1.10 Code for matrix multiplication
Recall that

if J =

(
3 4
2 1

)
and L =

(
1 5 −7

−3 −4 0

)
then JL =

(
−9 −1 −21
−1 6 −14

)
To do this with numpy we use the dot method as follows:

[8]: J = np.array([[3, 4],[2, 1]])
L = np.array([[1, 5, -7],[-3, -4, 0]])
print('JL = \n', J.dot(L))

JL =
[[-9 -1 -21]
[-1 6 -14]]

An alternative is to use np.dot(J,L) like this,

[9]: print('JL = \n', np.dot(J,L))

JL =
[[-9 -1 -21]
[-1 6 -14]]

BUT: what we must not do is this: J*L. This will give an error Try it: use this print('JL = \n',
J*L) for example.

To see what an expression like this does consider these matrices,

if J =

(
3 4
2 1

)
and K =

(
1 5

−3 −4

)
then JK =

(
−9 −1
−1 6

)
With numpy this is,

[10]: K = np.array([[1, 5],[-3, -4]])
print('JK = \n', J.dot(K))

8

JK =
[[-9 -1]
[-1 6]]

which should not be a surprise. Now let’s see what J*K is…

[11]: print('JK = \n', J*K)

JK =
[[3 20]
[-6 -4]]

What just happened? Can you figure it out?

BE CAREFUL of this - it can cause errors (bugs) that are hard to spot.

THINK ABOUT: is there a mathematical notation for this type of product? This is
called elementwise multiplication - why? Look up Hadamard Product - is it related?

1.11 Notation
It is useful to be able to refer to the elements in a vector or a matrix in a generic way. We do this
with subscripts.

Given an n-dimensional vector v ∈ Rn, we refer to the value in position j as vj .

Similarly, given an m × n-dimensional matrix R ∈ Rm,n, we refer to the value in row i, column j
as rij (or when confusion might arise, as ri,j).

For example,

if b =

6

−3
2.5
−1
0

 and N =

(
−4 7/8 0
9 6 0

)
,

Then b4 = −1 and N1,2 = 7/8.

THINK ABOUT indices start at zero in numpy so N15 in maths becomes N[0,4] in
code. Be Careful! this can be confusing.

1.12 The Matrix-Vector Product
This is a partcularly important form of matrix-matrix multiplication.

A column vector is no more than a matrix with one column. This means that we can multiply
matrices and vectors providing they are of compatible dimension. A particularly important case is
the matrix-vector product of the form Bu = f . For example,

if B =

 3 −2 4
−6 6 −11
6 2 5

 and u =

 2
0

−1

 then f =

 2
−1
7

9

because

Bu =

 3 −2 4
−6 6 −11
6 2 5

 2
0

−1

 =

 2
−1
7

 .

Let’s verify this with numpy…

Bu =

 3 −2 4
−6 6 −11
6 2 5

 2
0

−1

 =

 2
−1
7

 .

[12]: B = np.array([[3, -2, 4],[-6, 6, -11],[6, 2, 5]])
u = np.array([[2], [0], [-1]])
f = B.dot(u)
print('f = \n', f)

f =
[[2]
[-1]
[7]]

1.13 The Matrix Inverse
A way to build on the previous calculation is to remember that for ‘ordinary’ (scalar) variables b,
u and f , if we have bu = f then if b ̸= 0 we can multiply both sides by b−1 and get b−1bu = b−1f .
Of course, this is just u = f/b, and it works because b−1b = 1.

For matrices we can imagine doing the same thing. If Bu = f we might hope to be able to write
u = B−1f . If we knew B and f this would then allow us to find u = B−1f .

The situation is quite complicated. First note that

1

36

 52 18 −2
−36 −9 9
−48 −18 6

 3 −2 4
−6 6 −11
6 2 5

 =
1

36

 36 0 0
0 36 0
0 0 36

 =

 1 0 0
0 1 0
0 0 1

 .

This calculation also illustrates the general rule given above that if we multiply a matrix by a scalar
then we should multiply every value in that matrix by that scalar.

1

36

 52 18 −2
−36 −9 9
−48 −18 6

 3 −2 4
−6 6 −11
6 2 5

 =
1

36

 36 0 0
0 36 0
0 0 36

 =

 1 0 0
0 1 0
0 0 1

 .

The matrix on the right is called the identity matrix. Here it is three-by-three but such a square
matrix exists for every dimension. It is always zero everywhere except for unit entries on the leading
diagonal.

10

The identity matrix is, for us, always denoted by I and in matrix theory plays the role of 1. So,
by analogy with b−1b = 1 above, the above calculation suggests B−1B = I where

B−1 =
1

36

 52 18 −2
−36 −9 9
−48 −18 6

 .

In this expression 36 is the value of the determinant of B. If this value were zero then this inverse
matrix would not be defined.

1.14 Determinant of a Square Matrix
The determinant is a difficult quantity to define and work with. It can only be defined for square
matrices. If K is square its determinant is denoted by det(K).

Consider first the case of a 2× 2 matrix:

if K =

(
a b
c d

)
then det(K) = ad− bc and K−1 =

1

det(K)

(
d −b

−c a

)
if, and only if, det(K) ̸= 0. You can check that for yourself. The more general case is far more
difficult to discuss so here we will merely accept this general result:

INVERSE MATRIX: a square matrix K is invertible if and only if its determinant
is non-zero. Its inverse satisfies K−1K = I.

In practice it is usually very very difficult to check whether or not det(K) ̸= 0. However, fortunately,
the application area we are working on will often give us either a good clue, or a definite answer.
We’ll see a few examples of this as we go along.

THINK ABOUT: Create a matrix P for which P−1 exists (or use the one above)
and investigate how PP−1 and P−1P are related. Do you think this is always true?

THINK ABOUT: Create another matrix Q for which both QP and (QP)−1 exist.
How does this last quantity relate to P−1Q−1? Do you think this is always true?

1.15 Never do this - unless you know you need to
In practice we rarely if ever need to actually obtain the inverse or the determinant of a matrix.

If we really need them we can use numpy as follows…

[13]: print('det(B) = ', np.linalg.det(B))
multiply the inverse by 36 to tidy up the output...
print('inverse of 36B = \n', 36*np.linalg.inv(B))
compare this with what we observed above.

det(B) = 36.0
inverse of 36B =
[[52. 18. -2.]
[-36. -9. 9.]
[-48. -18. 6.]]

11

We can verify the inverse by checking that BB−1 = I as follows,

[14]: print('B*B^(-1) = \n', B.dot(np.linalg.inv(B)))

B*B^(-1) =
[[1.00000000e+00 0.00000000e+00 0.00000000e+00]
[-2.22044605e-16 1.00000000e+00 2.77555756e-17]
[-2.22044605e-16 0.00000000e+00 1.00000000e+00]]

Notice the small numbers - this isn’t unusual in computing. The numerical precision in the processor
is limited, and so the arithmetic is not exact. This is sometimes a problem, but usually not. If we
enounter it as a problem, we’ll discuss it.

We ought to check that B−1B = I also…

[15]: print('B^(-1)*B = \n', np.linalg.inv(B).dot(B))

B^(-1)*B =
[[1.00000000e+00 6.93889390e-17 -4.85722573e-17]
[0.00000000e+00 1.00000000e+00 0.00000000e+00]
[-5.55111512e-17 -1.66533454e-16 1.00000000e+00]]

1.16 Review
In the above:

• we reviewed the mathematical notion of a matrix, and related concepts.
• we reviewed the dot, scalar or inner product of vectors.
• we saw how using numpy in python we could

– create matrices;
– add and subtract them, and multiply by a scalar;
– form matrix-vector products;
– form element-wise products

We will be building extensively on these skills in the coming weeks.

Note again that we very rarely explicitly need the inverse of a matrix or a matrix determinant.
These can be easy to determine for small matrices, as we saw above, but as the matrices become
larger they take a very long time to compute. Avoid them at all costs.

1.17 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides 5_matrices.ipynb
• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams

12

• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[16]: %%bash
NBROOTNAME='5_matrices'
OUTPUTTING=1

if [$OUTPUTTING -eq 1]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

Not Generating html, pdf and py output versions

13

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

	Matrices
	What this is about:
	Assigned Reading
	Matrices
	Using numpy to represent matrices
	Addition and Subtraction
	Symmetry
	Matrix Multiplication by a Scalar
	The vector dot, scalar or inner product
	Matrix Multiplication
	Code for matrix multiplication
	Notation
	The Matrix-Vector Product
	The Matrix Inverse
	Determinant of a Square Matrix
	Never do this - unless you know you need to
	Review
	Technical Notes, Production and Archiving

