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1.1 What this is about:
You will see how …

• The SVD can be use to reduce the dimensionality of a data set
• This workflow can be implemented in numpy.

As usual our emphasis will be on doing rather than proving: just enough: progress at pace

1.2 Assigned Reading
This worksheet is self-contained given the material we have already covered.

1.3 Remembering k-NN for penguins
We’re going to recall how we used the k-NN’s algorithm to predict penguin species from four
columns of numerical data.

After we cleaned up the data set by removing the NaN’s we were left with 333 rows of data - one
row for each penguin. The four columns therefore total to 4× 333 = 1332 individual items of data.
Some of this is held back for testing, so the training data set size isn’t actually this big, but we do
need all of this for training and testing.
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This is a very modest size when compared to some data sets. Later we will see the MNIST data
set of digitized handwritten numerals, 0, 1, 2, . . . , 9.

There are 70, 000 examples in numerical MNIST, and each example requires 282 = 784 numbers.
The dataset therefore comprises 70, 000× 282 = 54, 880, 000 - 54 million - numbers.

It is useful to be able to reduce the amount of data down to just its essence. This results in less
computer memory needed, and faster computing times - because there is less to do.

1.3.1 Motivation

So, the example below is hopefully quite easy to follow when set in the context of our previous
sessions. The data set here is quite small, but the idea and technique we present is quite general.

Let’s start with our standard imports

1.3.2 In This Notebook WE WILL COMMIT a DATA SCIENCE CRIME

Will you be able to spot it?

[1]: import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
import seaborn as sns

[2]: from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix,␣
↪→accuracy_score

We’ll bring in the penguins data as before, clean it up, and re-implement our k-NN classifier.

[3]: dfp = sns.load_dataset('penguins')
dfp2 = dfp.dropna()
dfp2.isna().sum()
dfp2 = dfp2.reset_index(drop=True)
print(dfp2.shape)

(333, 7)

[4]: dfp.head()

[4]: species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen NaN NaN NaN
4 Adelie Torgersen 36.7 19.3 193.0
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body_mass_g sex
0 3750.0 Male
1 3800.0 Female
2 3250.0 Female
3 NaN NaN
4 3450.0 Female

[5]: dfp2.head()

[5]: species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen 36.7 19.3 193.0
4 Adelie Torgersen 39.3 20.6 190.0

body_mass_g sex
0 3750.0 Male
1 3800.0 Female
2 3250.0 Female
3 3450.0 Female
4 3650.0 Male

We are going to repeat our example where we used the k-NN classifier to predict the species in
column zero from the numerical data in columns 3 - 6 (indexed as 2 - 5).

Here is that code again…

We fit the model using the Manhattan metric: ∥x∗ −xi∥1, and then plot the confusion matrix and
performance data.

[6]: # create our labelled training and test data sets with 60/40 train/test split
X = dfp2.iloc[:, 2:6].values
y = dfp2.iloc[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)
# scale the data
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
# obtain the classifier and fit it using 2 nearest neighbours
# and the Manhattan norm
classifier = KNeighborsClassifier(n_neighbors=2, p=1)
classifier.fit(X_train, y_train)# Now use the fitted model from the training␣
↪→data to predict

# from the test data.
y_pred = classifier.predict(X_test)
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[7]: # create a confusion matrix to assess the performance
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:"); print(cm)
accsc = accuracy_score(y_test,y_pred);
print("Accuracy:", accsc)

Confusion Matrix:
[[59 0 0]
[ 3 20 0]
[ 0 0 52]]
Accuracy: 0.9776119402985075

[8]: from sklearn.metrics import ConfusionMatrixDisplay
cmplot = ConfusionMatrixDisplay(cm, display_labels=classifier.classes_)
cmplot.plot()
plt.show()

In the above we extracted the columns of input data into a numpy array.

The array is called X. Here are the details

[9]: print(' The data type of X: ', type(X))
print(' The shape of X: ', X.shape)
print('The first four rows:\n', X[0:4,:])
print(' The last two rows:\n', X[-2:,:])
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The data type of X: <class 'numpy.ndarray'>
The shape of X: (333, 4)

The first four rows:
[[ 39.1 18.7 181. 3750. ]
[ 39.5 17.4 186. 3800. ]
[ 40.3 18. 195. 3250. ]
[ 36.7 19.3 193. 3450. ]]
The last two rows:

[[ 45.2 14.8 212. 5200. ]
[ 49.9 16.1 213. 5400. ]]

1.4 Dimensionality Reduction
Can we get by with less data?

We saw an example earlier, when we introduced binary classifiers, where we used just two columns,
bill depth and body mass to predict gender.

That’s useful - four columns of data are instantly halved into just two.

But we may have lost valuable infomation that was present in those dropped columns.

Can we drop half the columns but keep all the information?

Well, not quite, but we have see how we can approximate matrices using eigenvalues (square
matrices only) or singular values.

Here, X is a non-square matrix so we can take its SVD…

The SVD of X can be obtained from np.linalg.svd() as we now show.

We also see below that @ can be used for matrix multiplication: A @ B.

[10]: U, S, VT = np.linalg.svd(X, full_matrices=False) # full_matrices=False -␣
↪→discussed later

print(" U's shape: ", U.shape)
print(" VT's shape: ", VT.shape)
print(" S's shape: ", S.shape)
print(" S = ", S)
print("diag(S)'s shape: ", np.diag(S).shape)
print("allclose? (T/F): ", np.allclose(X, U @ np.diag(S) @ VT), end=' - ')
print("|| X-U @ np.diag(S) @ VT || = ", np.linalg.norm( X-U @ np.diag(S) @ VT )␣
↪→)

U's shape: (333, 4)
VT's shape: (4, 4)
S's shape: (4,)

S = [7.82505416e+04 4.99884015e+02 7.40457786e+01 4.18409792e+01]
diag(S)'s shape: (4, 4)
allclose? (T/F): True - || X-U @ np.diag(S) @ VT || = 1.862284009018728e-11

Look at the singular values. - They are always non-negative and numpy gives them to us in de-
scending order. - What do you notice about them? Can you introduce the notion of importance?
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- Graphics will help us… Let’s use a bar chart (sometimes termed a scree plot).

[11]: # in some contexts this is related to a scree plot
print("S = ", S)
plt.bar([1,2,3,4],S)

S = [7.82505416e+04 4.99884015e+02 7.40457786e+01 4.18409792e+01]

[11]: <BarContainer object of 4 artists>

[12]: # a log scale is sometimes preferable...
print("S = ", S)
plt.bar([1,2,3,4],S,log=True)

S = [7.82505416e+04 4.99884015e+02 7.40457786e+01 4.18409792e+01]

[12]: <BarContainer object of 4 artists>
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We have seen for the SVD that we can write, in general,

B = UΣV T =

p∑
j=1

σjujv
T
j

In this p is the rank of the matrix B.

Let’s apply this to X.

Note: this is one of the times where we’re using a symmetric letter, X, to denote a non-symmetric
matrix. It can’t be helped - this use of X is very standard in Machine Learning and it isn’t wise to
go against it.

Using the SVD for X we have,

X = UΣV T =

p∑
j=1

σjujv
T
j

and we’ll show below that p = 4. We can examine these approximations:

• Xn =
∑n

j=1 σjujv
T
j

for n = 1, 2, . . .. Think of n as being the number of columns we retain in our data set. We’ll
elaborate later.

In worksheet B you were encouraged to look up and use a python loop. We’ll use that here, it has
the form:
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for k in range(0,3):
do something with k = 0,1,2 in turn

now carry on with something else

[13]: # set up a zero matrix to hold the approximations X1, X2, ...
Xc = np.zeros(X.shape)
print('The norm of X is ', np.linalg.norm( X ) )
# take more and more terms in the SVD expansion - starting with none
for nc in range(0,1+S.shape[0]):

Xc = U[:, :nc] @ np.diag(S[:nc]) @ VT[:nc, :]
print('The norm of X-Xc is ',np.linalg.norm( X-Xc ) )

print('X-Xc is close to zero (T/F)...', np.allclose(X,Xc))

The norm of X is 78252.18454350013
The norm of X-Xc is 78252.18454350013
The norm of X-Xc is 507.06752386361745
The norm of X-Xc is 85.04966116997144
The norm of X-Xc is 41.84097917907918
The norm of X-Xc is 1.862284009018728e-11
X-Xc is close to zero (T/F)… True

We can see that the norm (size) of X−X1 drops from 78, 252 to 507, this is just 507/78252 = 0.7%
of the size of X.

This suggests that almost all the information contained in the four columns of penguins data is
captured in just the first rank one SVD approximation.

We see that X −X4 is essentially zero. Telling us that X is indeed a rank 4 matrix.

Here is a simpler way to code it. Recall that

Xn =
n∑

j=1

σjujv
T
j = σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n

the full expansion on the right of that expression can be emulated like this…

[14]: Xc = np.zeros(X.shape)
Xc = Xc + S[0]*U[:,0:1] @ VT[0:1,:]
print(np.linalg.norm(X - Xc))
Xc = Xc + S[1]*U[:,1:2] @ VT[1:2,:]
print(np.linalg.norm(X - Xc))
Xc = Xc + S[2]*U[:,2:3] @ VT[2:3,:]
print(np.linalg.norm(X - Xc))
Xc = Xc + S[3]*U[:,3:4] @ VT[3:4,:]
print(np.linalg.norm(X - Xc))

507.06752386361745
85.04966116997144
41.84097917907918
1.8955341028962172e-11
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Or we could use a loop - to emulate the summation symbol

[15]: Xc = np.zeros(X.shape)
nc = 4
for k in range(0, nc):

Xc = Xc + S[k] * U[:,[k]] @ VT[[k],:]
print(np.linalg.norm( X-Xc ) )

507.06752386361745
85.04966116997144
41.84097917907918
1.8955341028962172e-11

We can now go back to the k-NN code and use this reduced data set in place of the full four
columns.

Remember: we expect that the SVD has provided the essence of the four columns in
less space

We will use the loop as above, and examine the performance of the classifier as it depends on nc.

We’ll set up a numpy array to store the accuracy score for each choice of nc.

[16]: accarray = np.zeros([4])

[17]: #X = dfp2.iloc[:, 2:6].values # we don't use the raw data this time
Xc = np.zeros(X.shape)
nc = 3
for k in range(0, nc):

Xc = Xc + S[k] * U[:,[k]] @ VT[[k],:]
y = dfp2.iloc[:, 0].values # Xc needed below
X_train, X_test, y_train, y_test = train_test_split(Xc, y, test_size=0.40)
# scale the data
scaler = StandardScaler(); scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
# obtain classifier, fit using 2 NN's and the Manhattan norm
classifier = KNeighborsClassifier(n_neighbors=2, p=1)
classifier.fit(X_train, y_train)
# predict from the test data.
y_pred = classifier.predict(X_test)
# create a confusion matrix to assess the performance
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:"); print(cm)
accsc = accuracy_score(y_test,y_pred); print("Accuracy:", accsc)
print('nc = ', nc, ', ||X-Xc|| = ', np.linalg.norm(X - Xc))
# store the accuracy scores in a python list for nc=1,2,3,4
accarray[nc-1] = accsc

Confusion Matrix:
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[[59 0 1]
[ 4 25 1]
[ 0 0 44]]
Accuracy: 0.9552238805970149
nc = 3 , ||X-Xc|| = 41.84097917907918

A plot of the accuracy dependence on the number of singular values in use would be easier on the
eye…

NOTE: this will not make sense in the static PDF, HTML versions as it will only have run once

[18]: print(accarray)
plt.plot([1,2,3,4], accarray)
plt.xlabel('Number of Singular Values')
plt.ylabel('Accuracy estimate')
plt.ylim([0,1])

[0. 0. 0.95522388 0. ]

[18]: (0.0, 1.0)

Comments?
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1.4.1 Have you SPOTTED THE CRIME YET?

1.4.2 Review

We are now making a lot of progress. We have seen our how our first machine learning algorithm,
k-NN’s, can be configured and used, how to deal with data using seaborn (with pandas in tha back-
ground), deal with plots using matplotlib and deal with number crunching vectors and matrices
with numpy. All of this is within the convenient wrapper of the python programming language.

In the last example we are also starting to see how we can manipulate and transform data to ask
whether we need all of it or not.

We have seen a very important technique, but what value of nc should we use?

To answer such questions we need to think about what it is we are most interested in knowing.

For example, here is our confusion matrix for the last computation:

[19]: cmplot = ConfusionMatrixDisplay(cm, display_labels=classifier.classes_)
cmplot.plot()
plt.show()

Consider these questions:

1. Suppose a Chinstrap was prediced? What’s the chance that it’s an Adelie or Gentoo?
2. What’s the chance the prediction is correct?
3. Which species are predicted most accurately?
4. What is the probability that a Gentoo is incorrectly predicted?
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Have a think, How could you use the confusion matrix to answer these?

What we need here is Probability and, later, statistics.

They are the means by which we assert a strength of belief (probability) as well as describe results
and make inferences with confidence (statistics).

Next we’ll get on to reviewing some essential parts of those areas but beforehand we want to close
with some technical observations regarding the SVD.

1.5 SVD: The Singular Value Decomposition - some technicalities
Let K be an n-row by m-column matrix of real numbers. Then K = UΣV T - this is called the
Singular Value Decomposition of K. In this:

• U is an n× n orthogonal square matrix
• Σ is an n×m rectangular diagonal matrix
• V T is an m×m orthogonal square matrix

The entries on the diagonal of Σ are called the singular values of K and the number of non-zero
singular values gives the rank of K. The columns of U (resp. V ) are called the left (resp. right)
singular vectors of K.

Let’s look at the shapes of the matrices we have been using: we had X = UΣV T .

[20]: print('The shape of X is: ', X.shape, '\t we knew this')
print('The shape of U is: ', U.shape, '\t seems WRONG')
print('The shape of S is: ', S.shape, '\t seems WRONG')
print('The shape of VT is: ', VT.shape,'\t seems OK')

The shape of X is: (333, 4) we knew this
The shape of U is: (333, 4) seems WRONG
The shape of S is: (4,) seems WRONG
The shape of VT is: (4, 4) seems OK

What’s going on? Pictures will help…

Given K = UΣV T , with S for Σ, and using + to denote the non-zero diagonal elements, the shapes
of these depend on the shape of K

For n = m they are,

.---------. .---------. +---------. .---------.
| | | | | + | | |
| K | = | U | | + | | V^T |
| | | | | S + | | |
'---------' '---------' '---------+ '---------'

This is the ‘easy case’ - it’s just the eigenvalue problem (K need not be symmetric). There are two
other cases…

For n > m the shapes are,

.---------. .------------------. +---------. .---------.
| | | | | + | | |
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| | | | | + | | V^T |
| | = | | | + | | |
| K | | U | | + | '---------'
| | | | | |
| | | | | |
| | | | | S |
'---------' '------------------' '---------'

For n < m the shapes are,

.------------------. .---------. +------------------. .------------------.
| | | | | + S | | |
| K | = | U | | + | | |
| | | | | + | | |
'------------------' '---------' '-------+----------' | V^T |

| |
| |
| |
'------------------'

In each case S mas a zero submatrix. We’ve seen this in our earlier example:

We have seen this example of K = UΣV T before:

If K =

(
1 2 5
5 −6 1

)
then U =

(
−0.06213 . . . 0.99806 . . .
0.99806 . . . 0.06213 . . .

)
,

Σ =

(
7.88191 . . . 0 0
0 5.46584 . . . 0

)
and V =

 0.62525 . . . 0.23944 . . . −0.74278 . . .
−0.77553 . . . 0.29699 . . . −0.55708 . . .
0.08720 . . . 0.92437 . . . 0.37139 . . .


If we use these we can indeed check that

(
−0.062 . . . 0.998 . . .
0.998 . . . 0.062 . . .

)(
7.881 . . . 0 0
0 5.465 . . . 0

) 0.625 . . . 0.239 . . . −0.742 . . .
−0.775 . . . 0.296 . . . −0.557 . . .
0.087 . . . 0.924 . . . 0.371 . . .

T

(1)

=

(
1 2 5
5 −6 1

)
(2)

But look at the last column of S. It doesn’t give us anything…

Let’s remove it… It means we have lose the last column of V T (i.e. the last row of V ) as well…

(
−0.062 . . . 0.998 . . .
0.998 . . . 0.062 . . .

)(
7.881 . . . 0
0 5.465 . . .

)(
0.625 . . . 0.239 . . . −0.742 . . .

−0.775 . . . 0.296 . . . −0.557 . . .

)T

(3)

=

(
1 2 5
5 −6 1

)
(4)
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We still have K. Surprised? Let’s check this in numpy…

[21]: K = np.array([[1,2,5],[5,-6,1]])
U, S, VT = np.linalg.svd(K)
S1 = np.array([ [7.88191, 0], [0, 5.46584]])
V1 = np.array([ [0.625, 0.239],[-0.775, 0.297],[0.087,0.924]])
print( U @ S1 @ V1.T)
print(K)

[[ 0.99771032 1.99978285 4.99806744]
[ 4.99784675 -5.99580514 0.99822226]]
[[ 1 2 5]
[ 5 -6 1]]

Convinced? These numbers are just close because of the low precision we used. We’ll see how to
do this properly below.

What we have discovered here is the Thin SVD. It works like this…

For n > m we lose columns on the right of U to form U1, and rows at the bottom of S to form S1

.---------. .------------------. +---------. .---------.
| | | " | | + | | |
| | | " | | + | | V^T |
| | = | " | | + | | |
| K | | U1 " | | S1 + | '---------'
| | | " | |"""""""""|
| | | " | | |
| | | " | | |
'---------' '------------------' '---------'

For n < m we lose columns on the right of S to form S1, and columns at the right of V to form
V 1

.------------------. .---------. +------------------. .------------------.
| | | | | + S1 " | | |
| K | = | U | | + " | | V1^T |
| | | | | + " | | |
'------------------' '---------' '-------+"---------' | |

|""""""""""""""""""|
| |
| |
'------------------'

Let’s look at this in code… First get the SVD and look at what is returned…

[22]: K = np.array([[1,2,5],[5,-6,1]])
U, S, VT = np.linalg.svd(K)
print(U)
print(S)
print(VT)
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[[-0.06213744 0.9980676 ]
[ 0.9980676 0.06213744]]
[7.88191065 5.4658471 ]
[[ 0.62525456 -0.77553283 0.08720987]
[ 0.23944227 0.29699158 0.9243719 ]
[-0.74278135 -0.55708601 0.37139068]]

Here S is already truncated so we jusy use np.diag(S) to make it square. Also, as it is V T and
not V that is returned, we just have to slice the top two rows.

[23]: print(K)
print(U @ np.diag(S) @ VT[0:2,:])
print('K - U @ np.diag(S) @ VT[0:2,:] is zero (T/F): ', np.allclose(K, U @ np.
↪→diag(S) @ VT[0:2,:]) )

[[ 1 2 5]
[ 5 -6 1]]
[[ 1. 2. 5.]
[ 5. -6. 1.]]
K - U @ np.diag(S) @ VT[0:2,:] is zero (T/F): True

Suppose that we wanted to work with the full SVD, with all zeros included?

Well, we show this by example. First, note two things:

• np.linalg.svd returns V T , not V .

• The shape of S doesn’t agree with Σ.

So, we’ll need to pad S - and then we can check the reconstruction K = UΣV T .

The padding is a bit awkward - here it is…

[24]: S = np.hstack(( np.diag(S), np.zeros((2,1)) ))
print(S)

[[7.88191065 0. 0. ]
[0. 5.4658471 0. ]]

Now we can check the reconstruction K = UΣV T . It is zero (to machine precision), as expected…

[25]: print(K - U @ S @ VT)

[[-4.44089210e-16 -4.44089210e-16 -1.77635684e-15]
[-8.88178420e-16 1.77635684e-15 1.11022302e-16]]

Lastly: earlier we said we would explain full_matrices=False …

[26]: U, S, VT = np.linalg.svd(K, full_matrices=False)
print(U)
print(S)
print(VT)
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[[-0.06213744 0.9980676 ]
[ 0.9980676 0.06213744]]
[7.88191065 5.4658471 ]
[[ 0.62525456 -0.77553283 0.08720987]
[ 0.23944227 0.29699158 0.9243719 ]]

[27]: U, S, VT = np.linalg.svd(K, full_matrices=True)
print(U)
print(S)
print(VT)

[[-0.06213744 0.9980676 ]
[ 0.9980676 0.06213744]]
[7.88191065 5.4658471 ]
[[ 0.62525456 -0.77553283 0.08720987]
[ 0.23944227 0.29699158 0.9243719 ]
[-0.74278135 -0.55708601 0.37139068]]

With False the unwanted columns (or rows) of V (or V T ) aren’t returned - but S is still not a
matrix!

1.6 Review
There is a great deal that can be said about the SVD, but we’re going to stay narrowly focussed
and leave it here.

• We have indicated its value in data science and machine learning for dimensionality reduction.

• We have shown how to work with the thin SVD and the full SVD in numpy

1.6.1 How about THAT CRIME?

We used the test data in the SVD. Is that allowed?

2 HOMEWORK REMINDER - very important
In the lab we are going to see how the SVD can be used to compress data.

We’ll use image compression as an example.

Take a good quality jpeg colour photo (e.g. on your phone) of something vivid, detailed and colourful
and save it on your account (One Drive, for example) so that your Jupyter notebook in Anaconda
can use it.

We are going to use the SVD to compress the image.

We may have already done this - it will depend on the timetable.

2.1 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.
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Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook four times to populate accarray and get a plot
• Create html slide show:

– jupyter nbconvert --to slides 8_svddemo.ipynb
• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[28]: %%bash
NBROOTNAME='8_svddemo'
OUTPUTTING=1

if [ $OUTPUTTING -eq 1 ]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

Not Generating html, pdf and py output versions
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