
9_probstat

February 27, 2024

1 Probability and Statistics
variationalform https://variationalform.github.io/

Just Enough: progress at pace https://variationalform.github.io/

https://github.com/variationalform

Simon Shaw https://www.brunel.ac.uk/people/simon-shaw.

This work is licensed under CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International)

Visit http://creativecommons.org/licenses/by-sa/4.0/ to see the terms.

This document uses python

and also makes use of LaTeX

in Markdown

1.1 What this is about:
This is a very quick recap of essential (for us) concepts in

• Probability.
• Statistics.

As usual our emphasis will be on doing rather than proving: just enough: progress at pace

1.2 Assigned Reading
For this worksheet you are recommended Chapter 6 of [MML] and Appendix C of [DSML].

• MML: Mathematics for Machine Learning, by Marc Peter Deisenroth, A. Aldo Faisal, and
Cheng Soon Ong. Cambridge University Press. https://mml-book.github.io.

• DSML: Data Science and Machine Learning, Mathematical and Statistical Methods by Dirk
P. Kroese, Zdravko I. Botev, Thomas Taimre, Radislav Vaisman https://people.smp.uq.
edu.au/DirkKroese/DSML/DSML.pdf

• There are also various resources here: https://stats.libretexts.org/Bookshelves

These can be accessed legally and without cost. NOTE: we haven’t referred to the second of these
before.

There are also these useful references for coding:

1

https://variationalform.github.io/
https://variationalform.github.io/
https://github.com/variationalform
https://www.brunel.ac.uk/people/simon-shaw
https://mml-book.github.io
https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf
https://people.smp.uq.edu.au/DirkKroese/DSML/DSML.pdf
https://stats.libretexts.org/Bookshelves

• PT: python: https://docs.python.org/3/tutorial
• NP: numpy: https://numpy.org/doc/stable/user/quickstart.html
• MPL: matplotlib: https://matplotlib.org

And, DSML (as above): Appendix D has a very useful python primer.

1.3 Discrete Probability
Probability is a subtle topic, and also not without its interpretational controversy.

Suppose you flip a coin S times and it lands heads n times.

• What is the probability that it will land heads next time you flip it?
• What is the probability it will not land heads, but land tails?

We do this by looking at the relatve frequencies and say:

• The probabilty of a head, written P(H) is given by the limiting value of n/S as S → ∞.
• Since the coin land heads or tails and it can’t land both: P(H)+P(T) = 1. This is certainty.
• It follows that P(T) = 1− P(H).

This seems fine - we can flip a coin as many times as we like to approximate S → ∞.

We can also introduce prior beliefs. If the coin is fair, a judgement we make by appeal to its physical
symmetry and the laws of physics, then we can assert that

P(H) = 1/2, and

P(T) = 1/2.

Sometimes though we can’t appeal to this type of simple intuitive interpretation of probability.

There is a 70% chance of rain tomorrow.

Really? What does that mean? It isn’t like the coin toss. We can’t repeat ‘tomorrow’ S times and
count the number n of times it rains.

What this means is that for 10 meteorologically similar days we can expect to need an umbrella on
7 of them.

There is a lot of history and lively debate around these questions of interpretation. See for example,
https://plato.stanford.edu/entries/probability-interpret/

We’re fortunate though. We will usually be able to run our codes many times on large enough data
sets, and so we can think about relative frequencies.

1.3.1 Key axioms of Discrete Probability

We think of running an experiment. We will have a sample space Ω of all the possible outcomes of
the experiment, and an event space E of all possible results. The event space is the power set of Ω.

For example, if we toss a coin three times there are 23 possible outcomes.

Ω = {HHH,HHT,HTH, THH,HTT, THT, THH, TTT}.

Example of events are

(i) ‘Two heads and one tail’: {HHT,HTH, THH}.

2

https://docs.python.org/3/tutorial
https://numpy.org/doc/stable/user/quickstart.html
https://matplotlib.org
https://plato.stanford.edu/entries/probability-interpret/

(ii) ‘Head on first fall’: {HHH,HHT,HTH,HTT}.

There is a function P : E → [0, 1] that assigns a probability to each event E ∈ E . This function
gives the probability of E ∈ E .

On the assumption that this is revision, we wont work through examples here.

1.3.2 Conditional Probability

Suppose you want to know the probability that A occurs given that B does occur. For example,

• What is the probability of a negative test, A, given the patient is healthy, B?
• What is probability of a DNA match, A, on a guilty defendant, B?
• What is the probability the penguin is a Chinstrap given that your k-NN classifier predicts

so?

We write this conditional probability as P(A | B).

To understand it, suppose that in S trials A and B have simultaneously occurred m times while
B has occurred n times. We must have that n ≥ m and so the probability that A and B both
occurred given that B occurred is reasoned out like this:

P(A | B) ≈ m

n
=

m

S

S

n
=

m

S

(n
S

)−1
→ P(A and B)

P(B)
.

We take the right hand side as the definition of the left hand side, given the intuitive calculation
in the middle.

1.3.3 Bayes’ Theorem

This is very useful. It allows us to switch the conditioning around.

• What is the probability that the patient is healthy, B, given a negative test, A?
• What is probability that the defendant is guilty, B, given a DNA match, A?
• What is the probability that the classifier predicts Gentoo for Adelie?

P(B | A) =
P(A and B)

P(A)
=

P(A and B)

P(B)

P(B)

P(A)
=

P(B)

P(A)
P(A | B).

It is useful to recognise that P(A and B) = P(A | B)P(B) = P(B | A)P(A).

1.3.4 Key Formulae for Probability.

P(A or B) = P(A) + P(B)− P(A and B).

P(A or B) = P(A) + P(B) if A and B are mutually exclusive.

P(A and B) = P(A)P(B) if A and B are independent.

P(A) + P(¬A) = 1 where ¬A (‘not’ A) means that A did not occur.

The Partition Theorem (or the Law of Total Probability)

• P(A) = P(A and B) + P(A and ¬B)

3

• P(A) = P(A | B)P(B) + P(A | ¬B)P(¬B)

Bayes formula (reprised)

P(B | A) =
P(A and B)

P(A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | ¬B)P(¬B)

We wont have too much need for these, but we are interested in the connection to confusion
matrices…

1.3.5 Confusion Matrices

Recall that for a binary classifier our confusion matrices took the very specific form:

target, or true
label/class

Y
N

(
TP FN
FP TN

)
+ −

output, or predicted
label/class

These numbers represent estimates (that get better as S → ∞) of conditional probabilities…

Example: suppose we have this set of results where Y or N are the known labels and + and −
are the predictions:

label Y
N

(
TP FN
FP TN

)
+ −

predicted

with, specifically,
(

62 5
9 44

)
.

There are S = 120 results. Look along the first row - these are the actual numbers in the sample
which are labelled as Y (healthy, innocent, passed, safe, …) as opposed to N (sick, guilty, failed,
unsafe, …).

So 62 + 5 are in the Y class out of a total of 120. If this sample represents the population then we
can estimate…

P(Y) = 67/120. Similarly, P (+) = (62 + 9)/120.

Further, in the second row, we know that N occurs, for these are all in the N class. So, with similar
reasoning …

P(+ | N) = 9/(9 + 44). Similarly, P (Y | −) = 5/(5 + 44).

Let’s see all the calculations…

[1]: import numpy as np
cm = np.array([[62,5],[9,44]])
N = cm.sum()
print('Number of samples: ', N,' with base rates...')
print('P(Y) = (62+5)/120 = ', (62+5)/120, end=' and ')
print('P(N) = (9+44)/120 = ', (9+44)/120, ' = 1-P(Y)')

4

print('P(+) = (62+9)/120 = ', (62+9)/120, end=' and ')
print('P(-) = (5+44)/120 = ', (5+44)/120, ' = 1-P(+)')
print('Conditionals...')
print('P(Y|+) = 62/(62+9) = ', 62/(62+9), end=' and ')
print('P(N|+) = 9/(62+9) = ', 9/(62+9))
print('P(Y|-) = 5/(5+44) = ', 5/(5+44), end=' and ')
print('P(N|-) = 44/(5+44) = ', 44/(5+44))
print('P(+|Y) = 62/(62+5) = ', 62/(62+5), end=' and ')
print('P(-|Y) = 5/(62+5) = ', 5/(62+5))
print('P(+|N) = 9/(9+44) = ', 9/(9+44), end=' and ')
print('P(-|N) = 44/(9+44) = ', 44/(9+44))

Number of samples: 120 with base rates…
P(Y) = (62+5)/120 = 0.5583333333333333 and P(N) = (9+44)/120 =
0.44166666666666665 = 1-P(Y)
P(+) = (62+9)/120 = 0.5916666666666667 and P(-) = (5+44)/120 =
0.4083333333333333 = 1-P(+)
Conditionals…
P(Y|+) = 62/(62+9) = 0.8732394366197183 and P(N|+) = 9/(62+9) =
0.1267605633802817
P(Y|-) = 5/(5+44) = 0.10204081632653061 and P(N|-) = 44/(5+44) =
0.8979591836734694
P(+|Y) = 62/(62+5) = 0.9253731343283582 and P(-|Y) = 5/(62+5) =
0.07462686567164178
P(+|N) = 9/(9+44) = 0.16981132075471697 and P(-|N) = 44/(9+44) =
0.8301886792452831

1.3.6 Relation to Earlier Formulae and Measures

Earlier for a binary classifier we defined some useful terms for measuring performance. Some of
these can be related to conditional probabilites.

target, or true
label/class

Y
N

(
TP FN
FP TN

)
+ −

output, or predicted
label/class

Recall that we used P and N for the number of positives and negatives overall in the test set.

• Prevalence: Prevalence = P
P+N = P(Y)

• TPR: True Positive Rate, sensitivity, recall: TPR = TP
P = TP

TP+FN = P(+ | Y)

• TNR: True Negative Rate, specificity, selectivity: TNR = TN
N = TN

TN+FP = P(− | N)

And also…

5

target, or true
label/class

Y
N

(
TP FN
FP TN

)
+ −

output, or predicted
label/class

• FPR: False Positive Rate: FPR = FP
N = FP

FP+TN = P(+ | N)

• FNR: False Negative Rate: FNR = FN
P = FN

FN+TP = P(− | Y)

• PPV: Positive Predictive Value, precision: PPV = TP
TP+FP = P(Y | +)

• NPV: Negative Predictive Value: NPV = TN
TN+FN = P(N | −)

1.4 Statistics and Associated Concepts
In addition to needing an understanding of how to infer probabilities from our results, we’ll also
need to understand some related concepts from Mathematical Statistics.

We review these terms:

• expected value and mean, median and mode.
• variance and standard deviation.
• correlation and covariance.

A random variable is a function Z : Ω → R. We can use them to take probabilities.

For example, a dice is thrown and Z is assigned the value shown on the upward face.

The Expected Value of the random variable is the sum of all the probabilities weighted by the
value of the variable:

• E(Z) =
6∑

k=1

k P(Z = k)

This coincides with the notion of average or mean value. Why?

1.4.1 Mean, Average, Expected Value

The numerical data we will usually be working with will typically be lists of samples of the random
variable, with each value of the random variable occuring with equal probability.

For example, if the random variable, Z, takes one of N equally probable values Z1, Z2, . . . , ZN ,
then the probability that a given value is taken is N−1 and then the expected value of Z is,

E(Z) =
N∑
k=1

kP (Zk) =
1

N

N∑
k=1

k = Z̄.

This, the expected value of Z, is called the mean, or average, value of Z.

We use Z̄ to denote the sample mean. It is common to denote the population mean by µZ , but
this isn’t usually accessible to us - we’ll almost always be working with samples and so we write
Z̄ ≈ µZ .

6

1.4.2 Median and Mode

The mean is a measure of the centre of a distribution. Two other measures are also in common
use. Confining ourselves to the discrete case these are…

• median: this is the value in the middle of an ordered set. For example {1, 3, 4, 78, 90} has
median 4. When the set has an even number of elements the median can be taken as the
average of the two centre elements.

• mode: this is the most frequently occuring value. The set above doesn’t have a mode (or all
elements are modes). The set {1, 3, 3, 78, 90} has mode 3.

1.4.3 Variance

The variance of the random variable, X, is defined (for our purposes) as

Var(X) = E(X2)−
(
E(X)

)2.
For us, with sample size N , this is,

Var(X) =
1

N

N∑
k=1

(
Xk − E(X)

)2
Also, the standard deviation is given by

σX = Std(X) =
√

Var(X).

These formulae are sometimes altered slightly for smaller samples sizes, with the denominator N
replaced by N − 1 to get an unbiased estimate. When N is large this has negligible effect.

Let’s see concrete examples with the data set X ∈ {1, 3, 4, 5, 7}. We’ll see that numpy can make life
easy for us…

[2]: X = np.array([1,3,4,5,7])
N = X.shape[0]
Xbar = X.sum()/N
print('E(X) = mean = ', Xbar, ' or with numpy: ', X.mean())
centre X using mean, then sum of squares using dot product
Xc = X-Xbar
VarX = Xc.T.dot(Xc) / N
print('Var(X) = variance = ', VarX, ' or with numpy: ', X.var())
print('SD(X) = Std Dev = ', np.sqrt(VarX), ' or with numpy: ', X.std())
or, the unbiased result..
VarX = Xc.T.dot(Xc) / (N-1)
print('Var(X) = variance = ', VarX, ' or with numpy: ', X.var(ddof=1))
print('SD(X) = Std Dev = ', np.sqrt(VarX), ' or with numpy: ', X.std(ddof=1))

E(X) = mean = 4.0 or with numpy: 4.0
Var(X) = variance = 4.0 or with numpy: 4.0
SD(X) = Std Dev = 2.0 or with numpy: 2.0
Var(X) = variance = 5.0 or with numpy: 5.0
SD(X) = Std Dev = 2.23606797749979 or with numpy: 2.23606797749979

7

1.4.4 Covariance and Correlation

Often we have more than one random variable in play. We saw four numerical columns in the
penguins data set for example. We can calculate stats for each column as shown above, but how
can we assess how related these variables might be?

We define the covariance of two random variables as

Cov(X,Y) = E
((

X − E(X)
)(
Y − E(Y)

))
=

1

N

N∑
k=1

(
Xk − X̄

)(
Yk − Ȳ

)
and the correlation coefficient of two random variables as

ρXY =
Cov(X,Y)

σX σY

It is easy to see that Cov(X,X) = Var(X) and that ρXX = 1.

These measurements indicate how strongly related the random variables are to each other: positive
correlations indicate that both tend to grow or diminish together, while negatives indicate that one
grows as the other shrinks. A zero correlation indicates that the variables are unrelated.

We’ll normally work with covariance rather than correlation. Let’s see an example - using penguins
again…

Grab the data and clean it up just like before.

[3]: import numpy as np
import seaborn as sns
dfp = sns.load_dataset('penguins')
dfp.head()
dfp = dfp.dropna()
dfp = dfp.reset_index(drop=True)
dfp.head()

[3]: species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen 36.7 19.3 193.0
4 Adelie Torgersen 39.3 20.6 190.0

body_mass_g sex
0 3750.0 Male
1 3800.0 Female
2 3250.0 Female
3 3450.0 Female
4 3650.0 Male

Now assign the numerical data in columns 3 - 6 in X

8

[4]: X = dfp.iloc[:, 2:6].values
X[:4,:]

[4]: array([[39.1, 18.7, 181. , 3750.],
[39.5, 17.4, 186. , 3800.],
[40.3, 18. , 195. , 3250.],
[36.7, 19.3, 193. , 3450.]])

Each column represents a random variable: X0, X1, X2, X3. We can calculate means, variances
and covariances. For example…

[5]: print('Mean of column 1 (indexed at 0) : ', X[:,0].mean())
print('Std Dev of column 3 (population): ', X[:,2].std())
print('Std Dev of column 3 (unbiased) : ', X[:,2].std(ddof=1))

Mean of column 1 (indexed at 0) : 43.99279279279279
Std Dev of column 3 (population): 13.994704772576716
Std Dev of column 3 (unbiased) : 14.015765288287879

[6]: # remember that we can access some summary stats like this...
dfp.describe()

[6]: bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
count 333.000000 333.000000 333.000000 333.000000
mean 43.992793 17.164865 200.966967 4207.057057
std 5.468668 1.969235 14.015765 805.215802
min 32.100000 13.100000 172.000000 2700.000000
25% 39.500000 15.600000 190.000000 3550.000000
50% 44.500000 17.300000 197.000000 4050.000000
75% 48.600000 18.700000 213.000000 4775.000000
max 59.600000 21.500000 231.000000 6300.000000

What about the covariance? Let’s calculate Cov(X1, X2)…

[7]: # first center the data using the column means...
X1 = X[:,[1]] - X[:,[1]].mean()
X2 = X[:,[2]] - X[:,[2]].mean()
then multiply, sum and take the unbiased average
N = X.shape[0]
CV12 = np.sum(X1*X2)/(N-1)
print("Cov(X1,X2) = ", CV12)

Cov(X1,X2) = -15.94724845327255

Rather than np.sum(), we can use the dot product, X1 ·X2 = XT
1 X2, like this…

[8]: CV12 = X1.T @ X2 / (N-1)
print("Cov(X1,X2) = ", CV12, " or as a scalar Cov(X1,X2) = ", float(CV12))

9

Cov(X1,X2) = [[-15.94724845]] or as a scalar Cov(X1,X2) = -15.94724845327255

A useful concept is the covariance matrix, it takes this form:

M =

Var(X0) Cov(X0, X1) Cov(X0, X2) Cov(X0, X3)
Cov(X1, X0) Var(X1) Cov(X1, X2) Cov(X1, X3)
Cov(X2, X0) Cov(X2, X1) Var(X2) Cov(X2, X3)
Cov(X3, X0) Cov(X3, X1) Cov(X3, X2) Var(X3)

Recall that Cov(X,X) = Var(X) and note that Cov(X,Y) = Cov(Y,X). This matrix is therefore
symmetric and so has real eigenvalues.

The covariance matrix is also positive semidefinite. This means that

u ·Mu ≥ 0

for all vectors u. This in turn means that the eigenvalues of the covariance matrix are non-negative.
To see this inequality assume without loss of generality that the Xi’s are already centered and collect
the observed value into the column vectors Xi. Then,

(N − 1)M =

X0 ·X0 X0 ·X1 X0 ·X2 X0 ·X3

X1 ·X0 X1 ·X1 X1 ·X2 X1 ·X3

X2 ·X0 X2 ·X1 X2 ·X2 X2 ·X3

X3 ·X0 X3 ·X1 X3 ·X2 X3 ·X3

 =

XT

0

XT
1

XT
2

XT
3

(
X0 X1 X2 X3

)

Write this as (N − 1)M = KTK and then for u arbitrary

u ·Mu =
1

N − 1
uTKTKu =

1

N − 1

(
Ku

)T
Ku ≥ 0

We have seen how to get a covariance matrix entry using numpy, but there are a lot more - and this
is for just four columns in the data set.

Lots of work… Fortunately numpy can do the heavy lifting for us…

[9]: # note the transpose...
print(np.cov(X.T))

[[2.99063334e+01 -2.46209134e+00 5.00581949e+01 2.59562330e+03]
[-2.46209134e+00 3.87788831e+00 -1.59472485e+01 -7.48456122e+02]
[5.00581949e+01 -1.59472485e+01 1.96441677e+02 9.85219165e+03]
[2.59562330e+03 -7.48456122e+02 9.85219165e+03 6.48372488e+05]]

We can see that in the third column, second row we have Cov(X1, X2) = −15.94724845 . . . as
expected.

But, the pandas library that gives us the data frames has already thought of …

… both covariance and correlation, like this:

10

[10]: dfp.cov()

[10]: bill_length_mm bill_depth_mm flipper_length_mm \
bill_length_mm 29.906333 -2.462091 50.058195
bill_depth_mm -2.462091 3.877888 -15.947248
flipper_length_mm 50.058195 -15.947248 196.441677
body_mass_g 2595.623304 -748.456122 9852.191649

body_mass_g
bill_length_mm 2595.623304
bill_depth_mm -748.456122
flipper_length_mm 9852.191649
body_mass_g 648372.487699

[11]: dfp.corr()

[11]: bill_length_mm bill_depth_mm flipper_length_mm \
bill_length_mm 1.000000 -0.228626 0.653096
bill_depth_mm -0.228626 1.000000 -0.577792
flipper_length_mm 0.653096 -0.577792 1.000000
body_mass_g 0.589451 -0.472016 0.872979

body_mass_g
bill_length_mm 0.589451
bill_depth_mm -0.472016
flipper_length_mm 0.872979
body_mass_g 1.000000

THINK ABOUT: do you need both flipper_length_mm and body_mass_g in your
analysis?

1.4.5 Review

We covered just enough, to make progress at pace. We looked at

• How conditional probabilities can be estimated from confusion matrices.
• How we can obtain statistical quantities using python tools.

Now we can start putting all of this material to work.

1.5 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides 9_probstat.ipynb

11

• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[12]: %%bash
NBROOTNAME='9_probstat'
OUTPUTTING=1

if [$OUTPUTTING -eq 1]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

Not Generating html, pdf and py output versions

12

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

	Probability and Statistics
	What this is about:
	Assigned Reading
	Discrete Probability
	Key axioms of Discrete Probability
	Conditional Probability
	Bayes' Theorem
	Key Formulae for Probability.
	Confusion Matrices
	Relation to Earlier Formulae and Measures

	Statistics and Associated Concepts
	Mean, Average, Expected Value
	Median and Mode
	Variance
	Covariance and Correlation
	Review

	Technical Notes, Production and Archiving

