
A_worksheet

February 2, 2023

1 Worksheet A
variationalform https://variationalform.github.io/

Just Enough: progress at pace https://variationalform.github.io/

https://github.com/variationalform

Simon Shaw https://www.brunel.ac.uk/people/simon-shaw.

This work is licensed under CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International)

Visit http://creativecommons.org/licenses/by-sa/4.0/ to see the terms.

This document uses python

and also makes use of LaTeX

in Markdown

1.1 What this is about:
This worksheet is based on the material in the notebooks

• intro
• vectors

Note that while the ‘lecture’ notebooks are prefixed with 1_, 2_ and so on, to indicate the order in
which they should be studied, the worksheets are prefixed with A_, B_, …

Refer back to the section where we introduced the use of numpy for vector calculations.

There we had set up the vectors a and p and illustrated arithmetic like this:

[1]: import numpy as np
a = np.array([3, -2, 1])
p = np.array([5, 2, -10])
g = a-p
print(g)
a = g+p
print(a)

[-2 -4 11]
[3 -2 1]

1

https://variationalform.github.io/
https://variationalform.github.io/
https://github.com/variationalform
https://www.brunel.ac.uk/people/simon-shaw

Exercises

1. Repeat the above calculation but with a and p as numpy column arrays.
2. Use np.sqrt(16) to print out

√
16 (e.g. https://numpy.org/doc/stable/reference/

generated/numpy.sqrt.html)
3. Use np.power(2,3) to print out 23 (e.g. https://numpy.org/doc/stable/reference/

generated/numpy.power.html).
4. Use np.pi to print out the area of a circle with radius 5. (e.g. https://numpy.org/doc/

stable/reference/constants.html)
5. Define these as numpy row arrays.

x =

3

−5
π

7.2√
9

 and y =

−3
16
1

1089
15

6. Print out x+ 2y.

7. Repeat 5 and 6 but with x and y as numpy column arrays.

[2]: # put your working in here - make new cells if you like

Hints

a = np.array([[3], [-2], [1]])
p = np.array([[5], [2], [-10]])
g = a-p
print(g)
a = g+p
print(a)

print('sqrt(16) = ', np.sqrt(16))
print('2 cubed = ', np.power(2,3))
print('pi*r-squared =', np.pi*5**2)
x = np.array([3, -5, np.pi, 7.2, np.sqrt(9)])
y = np.array([-3, 16, 1, 1089, 15])
print ('x + 2y = ', x + 2*y)

x.shape = (5,1)
y.shape = (5,1)
print ('x + 2y = \n', x + 2*y)

1.2 1089
What is special about 1089?

Take three integers from {1, 2, 3, 4, 5, 6, 7, 8, 9} and use them to make a three digit number. Reverse
the digits and subtract the smaller from the larger to get a new three digit number (put a zero in
front if it is only two digits). Add this number to its own reversal.

2

https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
https://numpy.org/doc/stable/reference/generated/numpy.power.html
https://numpy.org/doc/stable/reference/generated/numpy.power.html
https://numpy.org/doc/stable/reference/constants.html
https://numpy.org/doc/stable/reference/constants.html

Example, 2, 6, 8 gives 268. Reversing and subtracting gives 862−268 = 594. Reversing and adding
then gives 594 + 495 =?

Try this for other numbers - is it always the same?

See e.g. https://en.wikipedia.org/wiki/1089_(number)

[3]: print(862-268)
print(594+495)

594
1089

1.2.1 Vector norms

We saw the vector p-norm for any p ≥ 1 given by

∥v∥p =
{

p
√
|v1|p + |v2|p + · · ·+ |vn|p, if 1 ≤ p < ∞;

max{|vk| : k = 1, 2, . . . , n}, if p = ∞.

Although p < 1 is not allowed here, we do sometimes use phoney norms for cases when p < 1

Exercises - see e.g. https://numpy.org/doc/stable/reference/generated/numpy.linalg.
norm.html Using numpy.linalg.norm() with,

w =
(
3, 0,−5, 4, π2, 0,−23, 7,−99

)T
calculate these quantities and check your answers:

1. ∥w∥2
2. ∥w∥1
3. ∥w∥∞
4. ∥w∥3
5. ∥w∥ln 7

6. ∥w∥23

Hint: https://numpy.org/doc/stable/reference/generated/numpy.log.html

Furthermore, use numpy to calculate these phoney norms:

1. ∥w∥√2−1

2. ∥w∥0

Hint: https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html

[4]: # put your working in here - make new cells if you like

3

https://en.wikipedia.org/wiki/1089_(number)
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://numpy.org/doc/stable/reference/generated/numpy.log.html
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html

Hints

import numpy as np
w = np.array([3, 0, -5, 4, np.pi**2, 0, -23, 7, -99])
print(w)
print('||w||_2 = ', np.linalg.norm(w,2))
print('||w||_1 = ', np.linalg.norm(w,1))
print('||w||_inf = ', np.linalg.norm(w,np.inf)) # note how we denote infinity
print('||w||_3 = ', np.linalg.norm(w,3))
print('||w||_ln7 = ', np.linalg.norm(w,np.log(7)))
print('||w||_23 = ', np.linalg.norm(w,23))
print('||w||_0.414... = ', np.linalg.norm(w,np.sqrt(2)-1))
print('||w||_0 = ', np.linalg.norm(w,0))

1.3 Data as vectors
We look back at some of the data and learn a bit more about python and how to manipulate raw
data.

We start with the taxis data sets and see how we can convert some num-numerica data into
numeric.

[5]: import seaborn as sns
dft = sns.load_dataset('taxis')
dft.head(9)

[5]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0 2.15
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0 0.00
2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5 2.36
3 2019-03-10 01:23:59 2019-03-10 01:49:51 1 7.70 27.0 6.15
4 2019-03-30 13:27:42 2019-03-30 13:37:14 3 2.16 9.0 1.10
5 2019-03-11 10:37:23 2019-03-11 10:47:31 1 0.49 7.5 2.16
6 2019-03-26 21:07:31 2019-03-26 21:17:29 1 3.65 13.0 2.00
7 2019-03-22 12:47:13 2019-03-22 12:58:17 0 1.40 8.5 0.00
8 2019-03-23 11:48:50 2019-03-23 12:06:14 1 3.63 15.0 1.00

tolls total color payment pickup_zone \
0 0.0 12.95 yellow credit card Lenox Hill West
1 0.0 9.30 yellow cash Upper West Side South
2 0.0 14.16 yellow credit card Alphabet City
3 0.0 36.95 yellow credit card Hudson Sq
4 0.0 13.40 yellow credit card Midtown East
5 0.0 12.96 yellow credit card Times Sq/Theatre District
6 0.0 18.80 yellow credit card Battery Park City
7 0.0 11.80 yellow NaN Murray Hill
8 0.0 19.30 yellow credit card East Harlem South

dropoff_zone pickup_borough dropoff_borough

4

0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan
3 Yorkville West Manhattan Manhattan
4 Yorkville West Manhattan Manhattan
5 Midtown East Manhattan Manhattan
6 Two Bridges/Seward Park Manhattan Manhattan
7 Flatiron Manhattan Manhattan
8 Midtown Center Manhattan Manhattan

Exercises In the following the question mark denotes values that you have to determine.

1. use dft.shape to determine and print the number of rows and columns in the data set.
2. use dft.shape[?] to determine and print the number of rows in the data set.
3. use dft.shape[?] to determine and print the number of columns in the data set.
4. Use dft.iat[?,?] to print out the contents of the fourth column of the third row.
5. Use dft.loc[?].iat[?] to print out the contents of the twelfth column of the sixth row.
6. Use dft.loc[?] to print out the contents of ninth row.

[6]: # put your working in here - make new cells if you like

Hints

print('The number of rows and columns are: ', dft.shape)
print('The number of rows is: ', dft.shape[0])
print('The number of columns is: ', dft.shape[1])
print('dft.iat[2,3] = ', dft.iat[2,3])
print('dft.loc[5].iat[11] = ', dft.loc[5].iat[11],'\n')
print('dft.loc[8] = ')

1.4 Working with datetime

We have already seen that the first column in the dft.head() output can be ignored - that is just
a label for each observation and has nothing to do with the taxi ride data.

The pickup and dropoff columns are dates and times, and we ignored them earlier when we first
worked with this data set because they aren’t simple numerical values that can be put into a vector.

However, if we think of those as the number of seconds since 1 January 1970 then they are also just
numbers (integers if we ignore fractions of a second). These two numbers can then go in a vector,
just as those values in columns three to eight did.

Let’s see how to convert the dates and times to simpler integers.

The following material on date-time conversion was adapted from that at https:
//docs.python.org/3/library/datetime.html and https://stackoverflow.com/questions/
11743019/convert-python-datetime-to-epoch-with-strftime - it uses the datetime module.

We’ll remind ourself of the first few data points, and then import datetime.

5

https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://stackoverflow.com/questions/11743019/convert-python-datetime-to-epoch-with-strftime
https://stackoverflow.com/questions/11743019/convert-python-datetime-to-epoch-with-strftime

[7]: dft.head(3)

[7]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0 2.15
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0 0.00
2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5 2.36

tolls total color payment pickup_zone \
0 0.0 12.95 yellow credit card Lenox Hill West
1 0.0 9.30 yellow cash Upper West Side South
2 0.0 14.16 yellow credit card Alphabet City

dropoff_zone pickup_borough dropoff_borough
0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan

[8]: # here is a useful alternative
dft[0:3]

[8]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0 2.15
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0 0.00
2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5 2.36

tolls total color payment pickup_zone \
0 0.0 12.95 yellow credit card Lenox Hill West
1 0.0 9.30 yellow cash Upper West Side South
2 0.0 14.16 yellow credit card Alphabet City

dropoff_zone pickup_borough dropoff_borough
0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan

Exercise Show only rows 5 to 9 (inclusive) of the data set.

Hint: do you think that [4:9] refers to rows four to nine? If not, then what?

[9]: # put your working in here - make new cells if you like

[10]: # import the module
from datetime import datetime
and show the first few of rows again
dft[0:3]

6

[10]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.60 7.0 2.15
1 2019-03-04 16:11:55 2019-03-04 16:19:00 1 0.79 5.0 0.00
2 2019-03-27 17:53:01 2019-03-27 18:00:25 1 1.37 7.5 2.36

tolls total color payment pickup_zone \
0 0.0 12.95 yellow credit card Lenox Hill West
1 0.0 9.30 yellow cash Upper West Side South
2 0.0 14.16 yellow credit card Alphabet City

dropoff_zone pickup_borough dropoff_borough
0 UN/Turtle Bay South Manhattan Manhattan
1 Upper West Side South Manhattan Manhattan
2 West Village Manhattan Manhattan

[11]: # use the pickup time from the first data point
put = datetime(2019,3,23,20,21,9)
print('the data and time are ', put)
the elapsed time since 1 January 1970 is
print('elapsed time since 1 January 1970 = ', (put - datetime(1970,1,1)).
↪→total_seconds())

a quicker way to get this is
print('timestamp = ', put.timestamp())

the data and time are 2019-03-23 20:21:09
elapsed time since 1 January 1970 = 1553372469.0
timestamp = 1553372469.0

Now, we don’t want to be typing all of this ourselves so let’s start to automate the process.

First, we use dft.iat[0,0] to get the first element in the first row of the data-frame. We print it
out and see that it is just a character string giving the date and time we saw above.

[12]: print(dft.iat[0,0])

2019-03-23 20:21:09

This string is dft.iat[0,0]) which we interpret as %Y-%m-%d %H:%M:%S and then we can use
strptime() to get the datetime variable. This https://www.digitalocean.com/community/
tutorials/python-string-to-datetime-strptime was a useful source for writing these notes.

Once done, it’s then easy to get the timestamp - just as above.

[13]: dt = datetime.strptime(str(dft.iat[0,0]), '%Y-%m-%d %H:%M:%S')
print('The date and time are ', dt, ' with timestamp ', dt.timestamp())

The date and time are 2019-03-23 20:21:09 with timestamp 1553372469.0

Note that we had to write str(dft.iat[0,0]) rather that just dft.iat[0,0]. This is because (at
least at the time of writing) if we try to run this notebook in binder we will get an error.

7

https://www.digitalocean.com/community/tutorials/python-string-to-datetime-strptime
https://www.digitalocean.com/community/tutorials/python-string-to-datetime-strptime

The str() function converts its argument into a string. The next two commands show the type of
dft.iat[0,0]. If you see str (i.e. string) for both then you don’t need to replace dft.iat[0,0]
with str(dft.iat[0,0]).

In binder these don’t both give str, and so we have to force it to be a string.

[14]: type(str(dft.iat[0,0]))

[14]: str

[15]: type(dft.iat[0,0])

[15]: str

Let’s remind ourselves of the first line of the data, and then get the timestamps for the first two
entries:

[16]: dft[0:1]

[16]: pickup dropoff passengers distance fare tip \
0 2019-03-23 20:21:09 2019-03-23 20:27:24 1 1.6 7.0 2.15

tolls total color payment pickup_zone dropoff_zone \
0 0.0 12.95 yellow credit card Lenox Hill West UN/Turtle Bay South

pickup_borough dropoff_borough
0 Manhattan Manhattan

[17]: print(datetime.strptime(str(dft.iat[0,0]), '%Y-%m-%d %H:%M:%S').timestamp())
print(datetime.strptime(str(dft.iat[0,1]), '%Y-%m-%d %H:%M:%S').timestamp())

1553372469.0
1553372844.0

The time taken between pickup and dropoff, 2019-03-23 20:21:09 and 2019-03-23 20:27:24 is
6 minutes and 15 seconds. This is

[18]: print(6*60+15,' seconds')

375 seconds

Now let’s look at the difference between the two time stamps

[19]: ts1 = datetime.strptime(str(dft.iat[0,0]), '%Y-%m-%d %H:%M:%S').timestamp()
ts2 = datetime.strptime(str(dft.iat[0,1]), '%Y-%m-%d %H:%M:%S').timestamp()
print('ts 1 = ', ts1)
print('ts 2 = ', ts2)
print('ts2-ts1 = ', ts2-ts1)

8

ts 1 = 1553372469.0
ts 2 = 1553372844.0
ts2-ts1 = 375.0

and so the timestamp is just the conversion of a date to seconds.

You may wonder, then, when was zero seconds? Well, it was 1 January 1970 UTC (Coordinated
Universal Time). To see this, we need to make sure we specify the correct timezone and then:

[20]: from datetime import timezone
print(datetime(1970,1,1,0,0,0,tzinfo=timezone.utc).timestamp())

0.0

So, here then is our vector for the zero-th taxi data. Note that it now includes the first two values
as well as the six we had in the lecture.

Note that we use concatenate to join two numpy arrays.

[21]: r0 = np.array(dft.iloc[0,2:8])
print(r0)
r0 = np.concatenate(([ts1, ts2], np.array(dft.iloc[0,2:8])), axis=None)
print(r0)

[1 1.6 7.0 2.15 0.0 12.95]
[1553372469.0 1553372844.0 1 1.6 7.0 2.15 0.0 12.95]

Exercises In the following the question mark denotes values that you have to determine.

1. Use dft[?:?] to access rows 253 - 256 of the taxis datasets.
2. What do % and // do in python? (Hint: print(10//7,10%7)).
3. Use datetime to find the elapsed time in seconds for row 256.
4. Convert that time in seconds to minutes and seconds.
5. Print out row 14.
6. Create a vector of numbers that holds the first eight values from row 14.

For the last, use timestamp() to represent the date-time values. Also, look at what these commands
do. They might help you join two arrays without explicitly using concatenate.

A = np.array([1,2])
B = np.array([3,4,5,6,7,8])
print(A,B)
C = np.r_[A,B]
print(C)

[22]: # put your working in here - make new cells if you like

[23]: # put your working in here - make new cells if you like

[24]: # put your working in here - make new cells if you like

9

[25]: # put your working in here - make new cells if you like

Hints

print(10//7,10%7)

print('dft[252:256] = ')
dft[252:256]

ts1 = datetime.strptime(dft.iat[255,0], '%Y-%m-%d %H:%M:%S').timestamp()
ts2 = datetime.strptime(dft.iat[255,1], '%Y-%m-%d %H:%M:%S').timestamp()
print('elaspsed time in seconds: ', ts2-ts1)
mins = (ts2-ts1) % 60
print('elaspsed time in min:secs: ', (ts2-ts1) // 60, ':', (ts2-ts1) % 60)

dft[13:14]

ts1 = datetime.strptime(dft.iat[13,0], '%Y-%m-%d %H:%M:%S').timestamp()
ts2 = datetime.strptime(dft.iat[13,1], '%Y-%m-%d %H:%M:%S').timestamp()
ts12 = np.array([ts1,ts2])
print(ts12)
row = np.array(dft.iloc[13,2:8])
print(row)
row = np.r_[ts12,r3]
print(row)

THINK ABOUT What information could be lost as a result of converting the date-
time to a number?

Exercises For the taxis data set:

1. Produce a scatterplot of “dropoff_borough” vs. “tip”
2. Plot the dependence of fare on distance.

dft = sns.load_dataset('taxis')
dft.head()

sns.scatterplot(data=dft, x="dropoff_borough", y="tip")
sns.scatterplot(data=dft, x="distance", y="fare")

[26]: # put your working in here - make new cells if you like

[27]: # put your working in here - make new cells if you like

[28]: # put your working in here - make new cells if you like

10

Exercises For the tips data set:

1. What is the standard deviation of the tips?
2. Plot the scatter of tip against the total bill
3. Plot the scatter of total bill against day
4. Plot the scatter of tip against gender

dftp = sns.load_dataset('tips')
dftp.describe()
sns.scatterplot(data=dftp, x="total_bill", y="tip")
sns.scatterplot(data=dftp, x="day", y="total_bill")
sns.scatterplot(data=dftp, x="sex", y="tip")

[29]: # put your working in here - make new cells if you like

[30]: # put your working in here - make new cells if you like

[31]: # put your working in here - make new cells if you like

[32]: # put your working in here - make new cells if you like

1.5 Self-Study and Homework
Work through the following material and have a go at the questions at the end. Make a note of
anything you don’t understand, and ask in the next session.

1.5.1 The anscombe data set

As discussed in the lectures, this is pretty famous. There was a lot to take in during the walk-
through of the lecture notebook so this is another opportunity to slow things down and read at
your own pace. See https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Image Credit: https://upload.wikimedia.org/wikipedia/commons/7/7e/Julia-anscombe-plot-1.png

[33]: dfa = sns.load_dataset('anscombe')
look at how we get an apostrophe...
print("The size of Anscombe's data set is:", dfa.shape)

The size of Anscombe's data set is: (44, 3)

Let’s take a look at the data set - we can look at the head and tail of the table just as we did above.

[34]: dfa.head()

[34]: dataset x y
0 I 10.0 8.04
1 I 8.0 6.95
2 I 13.0 7.58
3 I 9.0 8.81
4 I 11.0 8.33

11

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

[35]: dfa.tail()

[35]: dataset x y
39 IV 8.0 5.25
40 IV 19.0 12.50
41 IV 8.0 5.56
42 IV 8.0 7.91
43 IV 8.0 6.89

It looks like the four data sets are in the dataset column. How can we extract them as separate
items?

Well, one way is to print the whole dataset and see which rows correspond to each dataset. Like
this…

[36]: print(dfa)

dataset x y
0 I 10.0 8.04
1 I 8.0 6.95
2 I 13.0 7.58
3 I 9.0 8.81
4 I 11.0 8.33
5 I 14.0 9.96
6 I 6.0 7.24
7 I 4.0 4.26
8 I 12.0 10.84
9 I 7.0 4.82
10 I 5.0 5.68
11 II 10.0 9.14
12 II 8.0 8.14
13 II 13.0 8.74
14 II 9.0 8.77
15 II 11.0 9.26
16 II 14.0 8.10
17 II 6.0 6.13
18 II 4.0 3.10
19 II 12.0 9.13
20 II 7.0 7.26
21 II 5.0 4.74
22 III 10.0 7.46
23 III 8.0 6.77
24 III 13.0 12.74
25 III 9.0 7.11
26 III 11.0 7.81
27 III 14.0 8.84
28 III 6.0 6.08
29 III 4.0 5.39

12

30 III 12.0 8.15
31 III 7.0 6.42
32 III 5.0 5.73
33 IV 8.0 6.58
34 IV 8.0 5.76
35 IV 8.0 7.71
36 IV 8.0 8.84
37 IV 8.0 8.47
38 IV 8.0 7.04
39 IV 8.0 5.25
40 IV 19.0 12.50
41 IV 8.0 5.56
42 IV 8.0 7.91
43 IV 8.0 6.89

From this we can see that there are four data sets: I, II, III and IV. They each contain 11 pairs
(x, y).

• The first set occupies rows 0, 1, 2, . . . , 10
• The second set occupies rows 11, 12, . . . , 21
• The third set occupies rows 22, 23, . . . , 32
• The fourth set occupies rows 33, 34, . . . , 43

However, this kind of technique is not going to be useful if we have a data set with millions of data
points (rows). We certainly wont want to print them all like we did above.

Is there another way to determine the number of distinct feature values in a given column of the
data frame?

Fortunately, yes. We want to know how many different values the dataset column has. We can
do it like this.

[37]: dfa.dataset.unique()

[37]: array(['I', 'II', 'III', 'IV'], dtype=object)

We can count the number of different ones automatically too, by asking for the shape of the
returned value. Here we go:

[38]: dfa.dataset.unique().shape

[38]: (4,)

This tell us that there are 4 items - as expected. Don’t worry too much about it saying (4,) rather
that just 4. We’ve seen what shape refers to earlier.

Now, we want to extract each of the four datasets as separate data sets so we can work with them.
We can do that by using loc to get the row-wise locations where each value of the dataset feature
is the same. (Ref: <# https://stackoverflow.com/questions/17071871/how-do-i-select-rows-from-
a-dataframe-based-on-column-values>)

For example, to get the data for the sub-data-set I we can do this:

13

[39]: dfa.loc[dfa['dataset'] == 'I']

[39]: dataset x y
0 I 10.0 8.04
1 I 8.0 6.95
2 I 13.0 7.58
3 I 9.0 8.81
4 I 11.0 8.33
5 I 14.0 9.96
6 I 6.0 7.24
7 I 4.0 4.26
8 I 12.0 10.84
9 I 7.0 4.82
10 I 5.0 5.68

Now we have this subset of data we can examine it - with a scatter plot for example.

[40]: sns.scatterplot(data=dfa.loc[dfa['dataset'] == 'I'], x="x", y="y")

[40]: <AxesSubplot:xlabel='x', ylabel='y'>

To really work properly with each subset we should extract them and give each of them a name
that is meaningful.

14

[41]: # On the other hand:
dfa1 = dfa.loc[dfa['dataset'] == 'I']
dfa2 = dfa.loc[dfa['dataset'] == 'II']
dfa3 = dfa.loc[dfa['dataset'] == 'III']
dfa4 = dfa.loc[dfa['dataset'] == 'IV']

[42]: sns.scatterplot(data=dfa1, x="x", y="y")
dfa1.describe()

[42]: x y
count 11.000000 11.000000
mean 9.000000 7.500909
std 3.316625 2.031568
min 4.000000 4.260000
25% 6.500000 6.315000
50% 9.000000 7.580000
75% 11.500000 8.570000
max 14.000000 10.840000

[43]: sns.scatterplot(data=dfa2, x="x", y="y")
dfa2.describe()

[43]: x y
count 11.000000 11.000000
mean 9.000000 7.500909

15

std 3.316625 2.031657
min 4.000000 3.100000
25% 6.500000 6.695000
50% 9.000000 8.140000
75% 11.500000 8.950000
max 14.000000 9.260000

[44]: sns.scatterplot(data=dfa3, x="x", y="y")
dfa3.describe()

[44]: x y
count 11.000000 11.000000
mean 9.000000 7.500000
std 3.316625 2.030424
min 4.000000 5.390000
25% 6.500000 6.250000
50% 9.000000 7.110000
75% 11.500000 7.980000
max 14.000000 12.740000

16

[45]: sns.scatterplot(data=dfa4, x="x", y="y")
dfa4.describe()

[45]: x y
count 11.000000 11.000000
mean 9.000000 7.500909
std 3.316625 2.030579
min 8.000000 5.250000
25% 8.000000 6.170000
50% 8.000000 7.040000
75% 8.000000 8.190000
max 19.000000 12.500000

17

1.6 Exercises
For the Anscombe data set:

1. Which of the summary statistics for x are the same or similar for each subset?
2. Which of the summary statistics for y are the same or similar for each subset?

Look at the diamonds data set

1. How many diamonds are listed there?
2. How many attributes, or features, does each have?
3. Create a scatter plot of price against carat.

1: dfd = sns.load_dataset('diamonds')
dfd.shape
53940 and 10
2: sns.scatterplot(data=dfd, x="carat", y="price")

1.7 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides A_worksheet.ipynb

18

• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[46]: %%bash
NBROOTNAME='A_worksheet'
OUTPUTTING=1

if [$OUTPUTTING -eq 1]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

Not Generating html, pdf and py output versions

[]:

19

https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

	Worksheet A
	What this is about:
	1089
	Vector norms

	Data as vectors
	Working with datetime
	Self-Study and Homework
	The anscombe data set

	Exercises
	Technical Notes, Production and Archiving

