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1.1 What this is about:
This worksheet is based on the material in the notebooks

• probstat
• regress
• svm
• percep
• pca

Note that while the ‘lecture’ notebooks are prefixed with 1_, 2_ and so on, to indicate the order in
which they should be studied, the worksheets are prefixed with A_, B_, …

[1]: import numpy as np
import matplotlib.pyplot as plt

1.1.1 Exercise 1

A fair dice is thrown: What is the probability that

• it falls on a six?
• it falls on an even number?
• it falls on an odd number greater than 2?
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1.1.2 Exercise 2

The defence counsel in the following case has called you as an expert witness.

A woman is on trial for murder. There is no evidence against her except for a lab-reported DNA
match between her and a scene-of-crime sample. The prosecution have correctly stated that the
theoretical probability of a match between two randomly selected people is one in a million, and
thereby conclude that the probability the defendant is innocent is 10−6.

Your legal team have learned that, while the lab never fails to identify a true match, it falsely reports
a match once in every 100, 000 tests (due, for example, to technology limitations, human error, …).
The court is also aware that there are around two million other women who fit the criminal profile
and, therefore, could have committed the crime.

What do you advise the defense counsel?

1.1.3 Exercise 3

When studying regression we defined the notion of cost as, for example, total squared error, TSE,
with regularization:

E(θ) = ∥y −Xθ∥22 + α∥θ∥pp

for p = 2 (ridge) or p = 1 (LASSO). This regularization term is often referred to as a penalty
term in the sense that it penalises large coeffcients.

Given that we are trying to minimise cost it is clear that with α > 0 we will also be trying to
minimize α∥θ∥pp which, in turn, tends to introduce small coefficients.

More than that though, the choice p = 1 may introduce sparsity into the coefficent vector. This is
a form of feature selection.

We can see why the ℓ1 norm seems to promote sparsity by borrowing from the discussion here:
https://stats.stackexchange.com/questions/45643/why-l1-norm-for-sparse-models

1. Define the vector v = (1, ϵ)T for some small ϵ > 0 and show that ∥v∥1 = 1+ϵ and ∥v∥22 = 1+ϵ2.

2. Assume that regularization reduces the first coefficent by δ (with 0 < δ < ϵ < 1) so that v
becomes v = (1− δ, ϵ)T . Show that now,

∥v∥1 = 1− δ + ϵ and ∥v∥22 = 1− 2δ + δ2 + ϵ2.

3. Now, assume instead that regularization reduces the second coefficent by δ (with 0 < δ < ϵ <
1) so that v becomes v = (1, ϵ− δ)T . Show that now,

∥v∥1 = 1 + ϵ− δ and ∥v∥22 = 1 + ϵ2 − 2ϵδ + δ2.

4. Is the reduction in norm the same in both cases for the ℓ1 norm?

5. Is the reduction in norm the same in both cases for the ℓ2 norm? If not, for which is the
reduction largest?

6. Explain what the author on the website (as above) means when s/he says
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it’s not so much that ℓ1 penalties encourage sparsity, but that ℓ2 penalties in some sense
discourage sparsity…

1.1.4 Exercise 4

Find the equation of the straight line that passes between the points q = (q1, q2) and r = (r1, r2)
in the (x1, x2) plane.

The minimum distance between each point and the line should be the same.

Find the general form of the equation of the line. And give the specific form in the case q = (5, 1)
and r = (2, 3).

1.1.5 Exercise 5

Write the straight line equation x2 = x1 + 1 in the form w · x = ϕ.

1.1.6 Exercise 6

Find the shortest distance from the point Q at coordinates (2, 1) to the line w · x = ϕ with
w = (−1, 1)T and ϕ = 1.

Caluclate this by hand, and use python.

1.1.7 Exercise 7

1. Use x1 = np.arange(-2,3,1) to create a one dimentsional grid in the x1 direction. Print
x1 to understand what is happening.

2. Use x2 = np.arange(-2,3,1) to create a one dimentsional grid in the x2 direction. Print
x2 to understand what is happening.

3. Use these lines of code to create 2D grids giving x1 coordinates and x2 coordinates in each
variable:

import numpy.matlib
N = x1.shape[0]
X1grid = np.matlib.repmat(x1,N,1)
X2grid = np.matlib.repmat(x2,N,1).T

Again, print your results to understand what is happening. Can you see why the .T is used for
transpose?

1.1.8 Exercise 8

Continuing from the last question, use this code in a new cell to evaluate the function y = x1 + x2
on the 2D grid. Use the indx variable to plot the function in blue when y < 0 and in red otherwise.
Print out y and indx so you can see exactly what is going on.

y = X1grid + X2grid
print(y)
indx = y < 0
print(indx)
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plt.scatter(X1grid[indx],X2grid[indx], color='blue')
plt.scatter(X1grid[~indx],X2grid[~indx], color='red')

1.1.9 Exercise 9

Replace plt.scatter with plt.plot in the above (in a new cell). What happens?

Can you solve this by replacing color='blue' with .b (similarly with .r)?

1.1.10 Exercise 10

Flatten the grids and the index with

X1f = X1grid.flatten()
X2f = X2grid.flatten()
indxf = indx.flatten()

Print out these new quantites - what has happened?

Use these flattened arrays with plt.scatter and plt.plot as above. Are the plots the same?

1.2 Exercise 11
Design a two-input, one-output perceptron, with a Heaviside activation function, that has decision
boundary 4− 7x1 + 3x2 = 0.

Evaluate the output of the perceptron for the inputs x = (−4, 3)T and x = (6, 2)T .

Plot this decision boundary with a solid black line over 0.5 ≤ x1 ≤ 1.5.

Also, illustrate this decision boundary for 0 ≤ x1, x2 ≤ 2 using a background grid of points (as
above) with grid spacing 0.1 and two colours.

1.3 Exercise 12
Design a two-input, two-output Heaviside-activated neural network that has decision boundaries
5x1 + 3x2 + 6 = 0 and 4x1 + 7x2 + 3 = 0.

Evaluate the output of the perceptron for the inputs x = (−4, 3)T , x = (6, 2)T , x = (−6, 2)T and
x = (6,−6)T .

Plot these decision boundaries with dotted black lines over −7 ≤ x1 ≤ 4.

Also, illustrate these decision boundaries for −10 ≤ x1, x2 ≤ 10 using a background grid of points
(as above) with grid spacing 1 and four colours.

1.4 Exercise 13
A binary classifier gives the following predicted outputs on the test set:

test label

pass

pass
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fail

pass

fail

pass

fail

pass

fail

pass

pass

fail

pass

fail

pass

fail

fail

pass

fail

predicted

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

fail

pass
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pass

fail

pass

pass

fail

Create the confusion matrix first by hand, and then using code.

### Exercise 14

Suppose you have these data points: (x1,x2) = (3, 3), (−3,−3) corresponding to the features x1

and x2.

Perform a principal component analysis (PCA). Before actually computing any results, think about
what you are expecting to find.

Suppose (3, 3) is removed but two more points are added: (1, 2), (2, 1). Repeat the PCA. What
do you find now?

In each case, determine the coordinates of these points in the principal component system. Discuss
the empirical variance in the data sets and the relevance of the eigenvalues.

2 Outline solutions
As usual - try the above before looking at these…

2.0.1 Answer 1

Here Ω = {1, 2, 3, 4, 5, 6} and E has 2|Ω| = 26 elements.

Appealing to the symmetry of the dice and the impartiality of the laws of physics, we have that

• Prob({6}) = 1/6, because all six numbers are equally likely and exactly one must occur.

• Prob({2, 4, 6}) = 3/6 = 1/2 or

– Prob({2}) + Prob({4}) + Prob({6}) = 1/6 + 1/6 + 1/6 = 1/2.

• Prob({3, 5}) = 2/6 = 1/3.

– Prob({3, 5}) = Prob({1, 3, 5})× Prob({3, 4, 5, 6}) = 3/6× 4/6 = 1/3.

The second illustrates that

• P(A and B) = P(A) + P(B) when A and B are mutually exclusive.

2.0.2 Answer 2

The way to discredit the prosecution’s probability is to focus on the DNA testing lab’s failure
rate. Let M be the event of a reported match between two samples. Let T be the event of a
true match, and let F be the event of a falsely reported match. Then, P (T ) = 10−6, P (M) =
P (T ∪ F ) = P (T ) + P (F ) = 10−6 + 10−5 and so,
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P(T | M) =
P (T ∩M)

P (M)
=

P (T )

P (M)
=

10−6

10−6 + 10−5
=

1

11
.

Another way of saying this is that, if we test every one of the 2, 000, 000 women who may be guilty,
we can expect 2 (one in a million) to show a true match and the lab to falsely report another 20
(one in 100, 000) as also matching. Hence, of the 22 who are reported to match, only 2 actually
match and 2/22 = 1/11 < 10% as above.

This means, we can imagine telling the jury, that there is a less than 10% probability that the
defendant’s DNA matches the DNA found at the crime scene. Moreover, in the absence of other
evidence, there are 22 other defendant candidates and, by choosing one at random, the probability
that we have the guilty one is only 1/22, or about 4.5%.

2.0.3 Answer 3

1. v = (1, ϵ)T and so ∥v∥1 =
∑

i |vi| = 1 + ϵ and ∥v∥22 =
∑

i |vi|2 = 1 + ϵ2.

2. v = (1 − δ, ϵ)T and so ∥v∥1 =
∑

i |vi| = 1 − δ + ϵ and ∥v∥22 =
∑

i |vi|2 = (1 − δ)2 + ϵ2 =
1− 2δ + δ2 + ϵ2.

3. v = (1, ϵ − δ)T and so ∥v∥1 =
∑

i |vi| = 1 + ϵ − δ and ∥v∥22 =
∑

i |vi|2 = 1 + (ϵ − δ)2 =
1 + ϵ2 − 2ϵδ + δ2.

4. Yes, the norm is reduced by δ in both cases.

5. The ℓ2 norm is reduced by (2−δ)δ when the larger component is reduced, but only by (2ϵ−δ)δ
when the smaller component is reduced.

6. Sparsity results from zeros being introduced into the coeffcient vector. A small value need
only be reduced by a correspondingly small amount to become zero. The argument above
suggests that small values only get a correspondingly small reduction in the ℓ2 norm, but
get equal reduction as larger values in the ℓ1 norm. This leads us to believe that there is an
increased possibility of zeroes being introduced in the LASSO case.

2.0.4 Answer 4

The midpoint is x̂ = (x̂1, x̂2) =
1
2

(
q + r

)
and the straight line must go through that point.

The straight line must be orthogonal to q− r and so its gradient must be m = (q1 − r1)/(r2 − q2).

This line has the general form of equation,

x2 − x̂2 =

(
q1 − r1
r2 − q2

)
(x1 − x̂1).

In the specific case given we have x̂ = (x̂1, x̂2) =
1
2

(
5+ 2, 1+ 3

)
= 1

2(7, 4), and with q = (5, 1) and
r = (2, 3) we have,

x2 −
4

2
=

(
5− 2

3− 1

)(
x1 −

7

2

)
.
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Or, simplified,

x2 =
3

2
x1 −

3

2

7

2
+

4

2
=

3

2
x1 −

21

4
+

8

4
=

3

2
x1 −

13

4
.

2.0.5 Answer 5

We have (w1, w2)
T · (x1, x2)T = ϕ with (w1, w2)

T = (−1, 1)T and ϕ = 1.

2.0.6 Answer 6

We use the formula we derived. With q = (2, 1)T ,

d =
ϕ−wTq

∥w∥2
=

1− (−1, 1)(2, 1)T√
2

=
2√
2

and so d =
√
2.

[2]: # Answer 6
w = np.array([[-1],[1]])
q = np.array([[2],[1]])
phi = 1
print(w)
print(q)
print(np.linalg.norm(w))
d = (phi - np.ndarray.item(w.T.dot(q)))/np.linalg.norm(w)
print(d)
d = (phi - np.matmul(w.T,q))/np.linalg.norm(w)
print(d)
d = (phi - np.vdot(w.T,q))/np.linalg.norm(w)
print(d)

[[-1]
[ 1]]
[[2]
[1]]
1.4142135623730951
1.414213562373095
[[1.41421356]]
1.414213562373095

2.0.7 Answer 7

Here is a fully worked example

[3]: x1 = np.arange(-2,3,1)
x2 = np.arange(-2,3,1)
print(x1, x2)
import numpy.matlib
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N = x1.shape[0]
X1grid = np.matlib.repmat(x1,N,1)
X2grid = np.matlib.repmat(x2,N,1).T
print('X1grid = \n', X1grid, '\n and X2grid = \n', X2grid)

[-2 -1 0 1 2] [-2 -1 0 1 2]
X1grid =
[[-2 -1 0 1 2]
[-2 -1 0 1 2]
[-2 -1 0 1 2]
[-2 -1 0 1 2]
[-2 -1 0 1 2]]
and X2grid =
[[-2 -2 -2 -2 -2]
[-1 -1 -1 -1 -1]
[ 0 0 0 0 0]
[ 1 1 1 1 1]
[ 2 2 2 2 2]]

2.0.8 Answer 8

Here is a fully worked example

[4]: y = X1grid + X2grid
indx = y < 0
plt.scatter(X1grid[indx],X2grid[indx], color='blue')
plt.scatter(X1grid[~indx],X2grid[~indx], color='red')
#print(y)
#print(indx)

[4]: <matplotlib.collections.PathCollection at 0x7fbcc83b29b0>
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2.0.9 Answer 9

Here is a fully worked example

[5]: plt.plot(X1grid[indx],X2grid[indx], color='blue')
plt.plot(X1grid[~indx],X2grid[~indx], color='red')

[5]: [<matplotlib.lines.Line2D at 0x7fbcb9649550>]
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[6]: plt.plot(X1grid[indx],X2grid[indx], '.b')
plt.plot(X1grid[~indx],X2grid[~indx], '.r')

[6]: [<matplotlib.lines.Line2D at 0x7fbc989df978>]

11



2.0.10 Answer 10

Here is a fully worked example.

[7]: X1f = X1grid.flatten()
X2f = X2grid.flatten()
indxf = indx.flatten()
print('X1f = \n', X1f)
print('X2f = \n', X2f)
print('indxf = \n', indxf)

X1f =
[-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1
2]

X2f =
[-2 -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2 2
2]

indxf =
[ True True True True False True True True False False True True
False False False True False False False False False False False False
False]

[8]: plt.scatter(X1f[indxf],X2f[indxf], color='blue')
plt.scatter(X1f[~indxf],X2f[~indxf], color='red')

[8]: <matplotlib.collections.PathCollection at 0x7fbc98a1a898>
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[9]: plt.plot(X1f[indxf],X2f[indxf], '.b')
plt.plot(X1f[~indxf],X2f[~indxf], '.r')

[9]: [<matplotlib.lines.Line2D at 0x7fbc98a9e080>]

2.0.11 Answer 11

We have in general…

x = (x0, x1, . . . , xN )T ,y = (y0, y1, . . . , yM )T ,y = σ(W Tx+ b)

Here for a decision boundary of −7x1 + 3x2 + 4 = 0 we choose W = (−7, 3)T and b = 4. Then

y = H(W Tx+ b).

Note that both y and b are scalars here. The equation of the decision in boundary can also be
written as x2 = (7x1 − 4)/3.

[10]: W = np.array([[-7,3]]).T
b = 4
# find y for input x = (-4,3)
X = np.array([[-4,3]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = (-4,3), y = ', y)
# find y for input x = (6,2)

13



X = np.array([[6,2]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = ( 6,2), y = ', y)

For input x = (-4,3), y = [[1.]]
For input x = ( 6,2), y = [[0.]]

[11]: s = 0.1
x1 = np.arange(0,2+s,s)
x2 = np.arange(0,2+s,s)
X = np.zeros([2,1])
N = x1.shape[0]
y = np.zeros([N,N])
import numpy.matlib
X1grid = np.matlib.repmat(x1,N,1)
X2grid = np.matlib.repmat(x2,N,1).T

for i in range(N):
for j in range(N):
X[0] = X1grid[i,j]
X[1] = X2grid[i,j]
y[i,j] = np.heaviside(W.T @ X + b, 0)

[12]: indx = (y < 0.5)
plt.scatter(X1grid[ indx],X2grid[ indx], color='blue')
plt.scatter(X1grid[~indx],X2grid[~indx], color='red')
P1x=0.5
P2x=1.5
plt.plot([P1x, P2x], [(7*P1x-4)/3, (7*P2x-4)/3], color='black')

[12]: [<matplotlib.lines.Line2D at 0x7fbca8b274a8>]
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2.0.12 Answer 12

We have in general…

x = (x0, x1, . . . , xN )T ,y = (y0, y1, . . . , yM )T ,y = σ(W Tx+ b)

Here for decision boundaries of 5x1+3x2+6 = 0 and 4x1+7x2+3 = 0 we choose W =
(
5 4
3 7

)
and

b =
(
6
3

)
. Then

y = H(W Tx+ b).

The equations of the decision in boundaries can also be written as x2 = −(5x1 + 6)/3 and x2 =
−(4x1 + 3)/7.

[13]: # here is the neural network definition
W = np.array([[5,4],[3,7]])
b = np.array([[6,3]]).T
# find y for input x = (-4,3)
X = np.array([[-4,3]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = (-4,3), y = \n', y)
# find y for input x = (6,2)
X = np.array([[6,2]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = ( 6,2), y = \n', y)
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# find y for input x = (-6,2)
X = np.array([[-6,2]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = (-6,2), y = \n', y)
# find y for input x = (6,-6)
X = np.array([[6,-6]]).T
y = np.heaviside(W.T@X+b,0)
print('For input x = ( 6,-6), y = \n', y)

For input x = (-4,3), y =
[[0.]
[1.]]
For input x = ( 6,2), y =
[[1.]
[1.]]
For input x = (-6,2), y =
[[0.]
[0.]]
For input x = ( 6,-6), y =
[[1.]
[0.]]

[14]: # two variable, output and input
s = 1
x1 = np.arange(-10,10+s,s)
x2 = np.arange(-10,10+s,s)
X = np.zeros([2,1])
N = x1.shape[0]
y = np.zeros([2,N,N])
import numpy.matlib
X1grid = np.matlib.repmat(x1,N,1)
X2grid = np.matlib.repmat(x2,N,1).T

for i in range(N):
for j in range(N):
X[0] = X1grid[i,j]
X[1] = X2grid[i,j]
y[:,[i],[j]] = np.heaviside(W.T @ X + b, 0)

indx0 = (y[0,:] < 0.5)
indx1 = (y[1,:] < 0.5)
indx00 = np.logical_and( indx0, indx1)
indx11 = np.logical_and(~indx0,~indx1)
indx01 = np.logical_and( indx0,~indx1)
indx10 = np.logical_and(~indx0, indx1)
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[15]: plt.scatter(X1grid[indx00], X2grid[indx00],15, color='brown')
plt.scatter(X1grid[indx11], X2grid[indx11],15, color='red')
plt.scatter(X1grid[indx01], X2grid[indx01],15, color='green')
plt.scatter(X1grid[indx10], X2grid[indx10],15 , color='blue')
P1x=-7
P2x=4
plt.plot([P1x, P2x], [-(5*P1x + 6)/3, -(5*P2x + 6)/3], ':k')
plt.plot([P1x, P2x], [-(4*P1x + 3)/7, -(4*P2x + 3)/7], '--k')

[15]: [<matplotlib.lines.Line2D at 0x7fbc88324f60>]

### Answer 13

First we just count them up…

test pass

4

6

test fail

6

3

pred pass

pred fail
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In code we can just write,

[16]: y_test = np.array([1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0])
y_pred = np.array([1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,1,0])

from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)
accsc = accuracy_score(y_test, y_pred)
print("Accuracy:", accsc)

Confusion Matrix:
[[3 6]
[6 4]]
Accuracy: 0.3684210526315789

Does this surprise you? Why is it not the same?

It’s because the values are used to index the matrix. We can alter them like this

[17]: y_test = ~y_test
y_pred = ~y_pred

cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)

Confusion Matrix:
[[4 6]
[6 3]]

[18]: from sklearn.metrics import ConfusionMatrixDisplay
cmplot = ConfusionMatrixDisplay(cm, display_labels=range(2))
fig, ax = plt.subplots(figsize=(4,4))
cmplot.plot(ax=ax)

[18]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at
0x7fbca8a9c1d0>
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It is also possible to use True and False, or multi=classes, like this:

[19]: y_test = np.array([True, True, False, True, False, False, True])
y_pred = np.array([True, False, True, False, True, False, True])
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)
y_test = np.array([1,2,0,1,0,1,0,2,0,1,2,0,1,0,1,2,2,1,0])
y_pred = np.array([1,0,1,0,1,2,1,0,2,0,2,0,2,1,1,0,1,1,0])
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)

Confusion Matrix:
[[1 2]
[2 2]]
Confusion Matrix:
[[2 4 1]
[2 3 2]
[3 1 1]]

### Answer 14

We need the covariance matrix and its eigen-system in each case.

[20]: # Case 1 - data is already centred - check
X = np.array([[3, 3], [-3, -3]])
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print('X = \n',X)
print(f'Column means: col 1, {X[:,0].mean()} and col 2, {X[:,0].mean()}')
# and the empirical covariance matrix
N = 2
S = 1/N*X.T @ X
print('S = \n',S)
# solve the eigenvalue problem||
lmda, V = np.linalg.eig(S)
print('evals = ', lmda)
print('evecs = \n', V)
print('( 3, 3) distance along PC1 = ', X[0,:].T @ V[:,0])
print('(-3,-3) distance along PC1 = ', X[1,:].T @ V[:,0])
print('( 3, 3) distance along PC2 = ', X[0,:].T @ V[:,1])
print('(-3,-3) distance along PC2 = ', X[1,:].T @ V[:,1])

X =
[[ 3 3]
[-3 -3]]
Column means: col 1, 0.0 and col 2, 0.0
S =
[[9. 9.]
[9. 9.]]
evals = [18. 0.]
evecs =
[[ 0.70710678 -0.70710678]
[ 0.70710678 0.70710678]]
( 3, 3) distance along PC1 = 4.242640687119285
(-3,-3) distance along PC1 = -4.242640687119285
( 3, 3) distance along PC2 = 0.0
(-3,-3) distance along PC2 = 0.0

[21]: # Case 2 - data is already centred - check
X = np.array([[-3, -3], [1,2], [2,1]])
print('X = \n',X)
print(f'Column means: col 1, {X[:,0].mean()} and col 2, {X[:,1].mean()}')
# and the empirical covariance matrix
N = 3
S = 1/N*X.T @ X
print('S = \n',S)
# solve the eigenvalue problem
lmda, V = np.linalg.eig(S)
print('evals = ', lmda)
print('evecs = \n', V)
print('(-3,-3) distance along PC1 = ', X[0,:].T @ V[:,0])
print('(-3,-3) distance along PC2 = ', X[0,:].T @ V[:,1])
print('( 1, 2) distance along PC1 = ', X[1,:].T @ V[:,0])
print('( 1, 2) distance along PC2 = ', X[1,:].T @ V[:,1])
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print('( 2, 1) distance along PC1 = ', X[2,:].T @ V[:,0])
print('( 2, 1) distance along PC2 = ', X[2,:].T @ V[:,1])

X =
[[-3 -3]
[ 1 2]
[ 2 1]]
Column means: col 1, 0.0 and col 2, 0.0
S =
[[4.66666667 4.33333333]
[4.33333333 4.66666667]]
evals = [9. 0.33333333]
evecs =
[[ 0.70710678 -0.70710678]
[ 0.70710678 0.70710678]]
(-3,-3) distance along PC1 = -4.242640687119286
(-3,-3) distance along PC2 = -4.440892098500626e-16
( 1, 2) distance along PC1 = 2.1213203435596424
( 1, 2) distance along PC2 = 0.7071067811865477
( 2, 1) distance along PC1 = 2.121320343559643
( 2, 1) distance along PC2 = -0.7071067811865474

In the first case there is just one principal component. The data are one-dimensional. The empirical
variance is 2× 1

2(3
2 + (−3)2) = 18 and is all captured by the only non-zero eigenvalue.

In the second case the variance is 2× 1
3(3

2 + 12 + 22) = 28/3 ≈ 9.333....

2.1 Technical Notes, Production and Archiving
Ignore the material below. What follows is not relevant to the material being taught.

Production Workflow

• Finalise the notebook material above
• Clear and fresh run of entire notebook
• Create html slide show:

– jupyter nbconvert --to slides E_worksheet.ipynb
• Set OUTPUTTING=1 below
• Comment out the display of web-sourced diagrams
• Clear and fresh run of entire notebook
• Comment back in the display of web-sourced diagrams
• Clear all cell output
• Set OUTPUTTING=0 below
• Save
• git add, commit and push to FML
• copy PDF, HTML etc to web site

– git add, commit and push
• rebuild binder

Some of this originated from
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https://stackoverflow.com/questions/38540326/save-html-of-a-jupyter-notebook-from-within-the-notebook

These lines create a back up of the notebook. They can be ignored.

At some point this is better as a bash script outside of the notebook

[22]: %%bash
NBROOTNAME='E_worksheet'
OUTPUTTING=1

if [ $OUTPUTTING -eq 1 ]; then
jupyter nbconvert --to html $NBROOTNAME.ipynb
cp $NBROOTNAME.html ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.html
mv -f $NBROOTNAME.html ./formats/html/

jupyter nbconvert --to pdf $NBROOTNAME.ipynb
cp $NBROOTNAME.pdf ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.pdf
mv -f $NBROOTNAME.pdf ./formats/pdf/

jupyter nbconvert --to script $NBROOTNAME.ipynb
cp $NBROOTNAME.py ../backups/$(date +"%m_%d_%Y-%H%M%S")_$NBROOTNAME.py
mv -f $NBROOTNAME.py ./formats/py/

else
echo 'Not Generating html, pdf and py output versions'

fi

Not Generating html, pdf and py output versions

[ ]:
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