Baekpropagation and Learning

We consider a neuron and associated operations on that neuron as follows:

Consider the general set.up between any two consecutive layers of a DNN σ σ r FOE FOE \cong \cong \cong $\geqslant 0$ r <u>ما</u> في ما o $E\subset\mathbb{R}$

H neurons L neurons

Quantities with hats, $\hat{\sigma}$, $\hat{\underline{\omega}}$, $\hat{\underline{\phi}}$, refer to the left hand layer For the whole network we have a training
Set of Ne items (x', E'), (x', E'), ..., (x^N, E^{NE}), and each input x' produces an output y'

We want to train the network by

upability the weights and blaises so an
to minimize a cost, or env, or performance
index. We can think about
ToIna Squareso EERRIS:

$$
\Sigma_{TSE} = \sum_{i=1}^{N_E} \psi(\underline{t}, \underline{y}) \text{ for } \Psi(\underline{t}, \underline{y}) = ||\underline{t} - \underline{y}||_2^2
$$

Mean Seurras Errese:

$$
\mathcal{E}_{\text{mse}} = \frac{1}{N} \sum_{t=1}^{N} \mathcal{F}(t^{i}, y^{i}) \text{ for } \mathcal{F}(t, y) \text{ as above}
$$

$$
\mathcal{E}_{TCE} = \sum_{i=1}^{N_{E}} \mathcal{F}(\underline{E}, \underline{y}^{i}) \quad \text{for } \underline{E}, \underline{y}^{i} \in \mathbb{R}^{c} \quad \text{(column)}
$$
\n
$$
\text{for} \quad d \quad \text{The class}
$$
\n
$$
\mathcal{F}(\underline{E}, \underline{y}) = -\sum_{j=1}^{d} \underline{E}_{j}^{i} \cdot \text{ln}(y_{j}) \quad \text{EnIRory loss}
$$
\n
$$
\text{(lost, env, ...)}
$$
\n
$$
\text{function} \quad \text{function}
$$

we II have more to say about cross ENTROPY later For now we Just assume we have a performance index, \mathcal{E}_1 where a function of t and y is summed over the training set.

In SGD we do not take the gradient of ^E to implementgradient descent updates on the weights and biase but Just each $\nabla f(\underline{t}', \underline{y}')$ (at least in the simplest case) in turn, perhaps chosen at random.

So we return to the general set up for ^a consecutive pair of layers from earlier recall all the equations in play, and differentiate f with respect to the weights and biases.

In addition to the equations above we also have $M \in \mathbb{R}^{H \times L}$ $\hat{\alpha} = \hat{\sigma}(\hat{\Omega}) \in \mathbb{R}^H$, $b \in R$ $\underline{\alpha} = \sigma(\underline{\eta}) \in \mathbb{R}^L$. Given $f = f(\underline{E}, \underline{y})$ consider these $\overline{Of} = \overline{Of}$ and ∂W_{rc} an ∂W_{rc} in Gradient Descent These will be used
in Gradient Descent W_{rc} W_{rc} $- \alpha \frac{\partial \psi}{\partial x}$ $\frac{\partial 4}{\partial 4} = \frac{\partial 4}{\partial n_4}$ $\frac{\partial n_2}{\partial n_5}$ $\frac{\partial 6}{\partial n_6} = \frac{1}{2}$ Jb Dnc Obc $b_c - b_c - \alpha \frac{\partial f}{\partial h}$

Now,
 $n_c = \sum_{l=1}^{H} W_{lc} \hat{a}_{l} + b_c$

and hence,

- $\frac{\partial n_c}{\partial w_{fc}} = \hat{a}_r$ and $\frac{\partial n_c}{\partial b_c} = 1$
- $It follows that$
- $\frac{\partial f}{\partial w_{bc}} = \hat{a}_r S_c$ and $\frac{\partial f}{\partial b} = S_c$

Where we define Sc = $\frac{\partial \underline{\mathrm{f}}}{\partial n_c}$ = $\frac{\partial \underline{\mathrm{f}}}{\partial n_c}$ = $\begin{bmatrix} 2\overline{\mathrm{f}}/2n_1 \\ 2\overline{\mathrm{f}}/2n_2 \\ \vdots \\ 2\overline{\mathrm{f}}/2n_L \end{bmatrix} \in \mathbb{R}^2$ These S vectors play a crucial role.

With these farmulae for individual components we can get $\frac{\partial f}{\partial \underline{\theta}} = \begin{bmatrix} \frac{\partial f}{\partial \theta} \\ \frac{\partial f}{\partial \theta} \\ \vdots \\ \frac{\partial f}{\partial \theta} \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} = S \in IR^L$

and
\n
$$
\frac{\partial f}{\partial \underline{\underline{u}}} = \begin{bmatrix} 34/3w_{11} & 34/3w_{12} & \cdots & 34/3w_{1L} \\ 04/3w_{21} & 04/3w_{22} & \cdots & 04/3z_{L} \\ \vdots & \vdots & \ddots & \vdots \\ 04/3w_{H1} & 34/3w_{H2} & \cdots & 04/3w_{HL} \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \hat{a}_{1}S_{1} & \hat{a}_{1}S_{2} & \cdots & \hat{a}_{1}S_{L} \\ \hat{a}_{2}S_{1} & \hat{a}_{2}S_{2} & \cdots & \hat{a}_{2}S_{L} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{a}_{H}S_{1} & \hat{a}_{H}S_{2} & \cdots & \hat{a}_{H}S_{L} \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \hat{a}_{1} \\ \hat{a}_{2} \\ \vdots \\ \hat{a}_{H}S_{1} & \hat{a}_{H}S_{2} & \cdots & \hat{a}_{H}S_{L} \end{bmatrix} = \hat{a} \leq^{T} \epsilon \mathbb{R}^{H \times L}
$$

Next we introduce the 'Jacopian' matrix,
\n
$$
\frac{\partial p}{\partial \hat{p}} = \begin{bmatrix} 2n_1/2\hat{a}_1 & 2n_2/2\hat{a}_2 & \cdots & 2n_1/2\hat{a}_n \\ 2n_2/2\hat{a}_1 & 2n_2/2\hat{a}_2 & \cdots & 2n_2/2\hat{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ 2n_L/2\hat{a}_1 & 2n_L/2\hat{a}_2 & \cdots & 2n_L/2\hat{a}_n \end{bmatrix} \in \mathbb{R}^{L \times H}
$$
\nUsing $\hat{q} = \hat{\sigma}(\hat{q})$ we calculate
\n
$$
\frac{2n_c}{2\hat{n}_r} = \frac{2}{2\hat{n}_r} \begin{bmatrix} \frac{H}{2} M_{dc} \hat{a}_l + b_c \\ \frac{I}{2} I_{c1} & \frac{L}{2} I_{c2} \end{bmatrix}
$$
\n
$$
= W_{rc} \frac{2\hat{a}_r}{2\hat{n}_r} \qquad \text{We used} \hat{a}_r = \hat{\sigma}(\hat{a}_r).
$$
\n
$$
= W_{rc} \hat{\sigma}'(\hat{n}_r) \qquad \text{differentiation}
$$
\nNow, $\frac{\partial n_c}{\partial \hat{n}_r} = W_{rc} \hat{\sigma}'(\hat{n}_r)$ is the
element of $\frac{\partial n}{\partial \hat{n}_r}$ in row c, column C_r So...

So,
\n
$$
\hat{S}_r = \frac{\partial \hat{q}}{\partial \hat{n}_r} = \sum_{l=1}^{L} \frac{\partial \hat{q}}{\partial n_l} \frac{\partial n_l}{\partial \hat{n}_r}
$$
\n
$$
= \sum_{l=1}^{L} \frac{\partial n_l}{\partial \hat{n}_r} S_l
$$
\n
$$
\Rightarrow \hat{S}_r = \left(\frac{\partial \hat{q}}{\partial \hat{q}}\right)^T \underline{S} = \left(\frac{\partial \hat{q}}{\partial \hat{q}}\right)^T \underline{S}
$$
\nRecall, in general, $(\frac{\partial \hat{q}}{\partial \hat{q}})^T = \underline{Q}^T P^T$, so...
\n
$$
\hat{S}_r = \hat{P}^T \underline{w} \underline{S} \Rightarrow \underline{\hat{S}} = \underline{\hat{H}} \underline{w} \underline{S}
$$
\nbecause $\hat{P}^T = \hat{P}$.
\n
$$
\hat{S}_r = \hat{P}^T \underline{w} \underline{S} \Rightarrow \underline{\hat{S}} = \underline{\hat{H}} \underline{w} \underline{S}
$$
\nbecause $\hat{P}^T = \hat{P}$.
\nThis recursion is the key: if we know
\n
$$
\underline{S}
$$
 at a layer, than we can find $\frac{\hat{S}}{\hat{S}}$ at
\nthe preceding large. (BAck PROP)
\nSo: the need \underline{S} at the final (output) layer...

... And that is available - because we know everything we need at that layer. $By definition: \quad \underline{S} = \frac{\partial \underline{F}}{\partial n}$ with $D = W^{T}\hat{Q} + b$ and $y = \sigma(v)$ Let's consider Erse, and then $\mathcal{L} = \mathcal{L}(\underline{t}, \underline{y}) = ||\underline{t} - \underline{y}||_2^2 = \sum_{i=1}^d (f_i - g_i)^2$ Hence, $\frac{\partial f}{\partial n} = \frac{\partial}{\partial n} \sum_{j=1}^{d} (f_j - f_j)^2 = -2 \sum_{j=1}^{d} e_j \frac{\partial f_j}{\partial n}$ for $e_i = f_i - g_i$. However, $g_i = \sigma(v)$ and so $\partial y_i = \int 0 i f \int \frac{1}{2} dx$

$$
\overline{\partial n_{c}} = \int \sigma'(n_{c}) \text{ if } j = c
$$

This means that $\frac{\partial \Psi}{\partial n_c} = -2e_c \sigma'(n_c).$

Hence,
\n
$$
\frac{\partial \Psi}{\partial \underline{u}} = -2 \begin{bmatrix} \sigma'(u_1)e_1 \\ \sigma'(u_2)e_2 \\ \vdots \\ \sigma'(n_L)e_L \end{bmatrix} \in \mathbb{R}^L
$$
\n
$$
= -2 \begin{pmatrix} \sigma'(u_1) & \text{seas} \\ \sigma'(u_2) & \vdots \\ \text{seas} & \sigma'(u_2) \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_L \end{pmatrix}
$$

 $= -24e$

A result we've seen many times before. So, at the final two layers ... $\frac{\partial f}{\partial \underline{w}} = \hat{a} \underline{S}^T$ and $\frac{\partial f}{\partial \underline{b}} = \underline{S}$ for $\underline{S} = -2\underline{A}\underline{e}$.

Summary

- . We can forward prop an input x through
the DNN to get the output y
- . We can form the error $e = t y$
- . We can form $S = -2Ae$ and then
	- update with \vec{n} \vec{n}
	- where $\frac{\partial f}{\partial w} = \frac{\partial^2 f}{\partial w^2} = 1$
	- . We backpropagate through to the previous layer $\hat{S} = \hat{H} \times \hat{S}$ and then $\frac{1}{\sqrt{6}} \approx \frac{1}{\sqrt{6}} \approx \frac{1}{\sqrt{6}} \approx 1$
	- Repeat all the Day backwards through the DNN updating weights and biases as we go

 $\overline{}$ 4 layer network ⁰ ^O ^O ^O O W O W O O $X \rightarrow 0 \quad \frac{1}{2}$ O 3 O $\frac{1}{2}$ O $\frac{1}{2}$ \circ \rightarrow y $\frac{1}{2}$ b $\frac{1}{2}$ b $\frac{1}{2}$ b $\frac{1}{2}$ $b₄$ O O O O layer ^I ² ³ 4 α ct: σ_2 σ_3 σ_4

 \leq_{4} = $t - y$ for a training pair $(x_{i}t)$ $S_4 = -2A_7e_4$ $S_{3} = A_{3} \Psi_{4} S_{4}$) backpropagating put back $S_2 = \bigoplus_{2} \underset{\approx}{\sim} S_3$ of input CALCULUS - BASED